

Supplementary Per- and Poly-fluoroalkyl Substances (PFAS) Assessment 35 McCullough Street, Cooranbong, NSW

> Prepared for: Johnson Property Group Pty Ltd EP2743.001 28 July 2022

QMS Certification Services

QMS Certification Services

Supplementary Per- and Poly-fluoroalkyl Substances (PFAS) Assessment

35 McCullough Street, Cooranbong, NSW

Johnson Property Group Pty Ltd 27 Patrick Drive, Cooranbong, NSW 2265

28 July 2022

Our Ref: EP2743.001

LIMITATIONS

This Supplementary Per- and Poly-fluoroalkyl Substances (PFAS) Assessment was conducted on the behalf of Johnson Property Group Pty Ltd for the purpose/s stated in Section 1.

EP Risk has prepared this document in good faith but is unable to provide certification outside of areas over which EP Risk had some control or were reasonably able to check. The report also relies upon information provided by third parties. EP Risk has undertaken all practical steps to confirm the reliability of the information provided by third parties and do not accept any liability for false or misleading information provided by these parties.

It is not possible in a Supplementary Per- and Poly-fluoroalkyl Substances (PFAS) Assessment to present all data, which could be of interest to all readers of this report. Readers are referred to any referenced investigation reports for further data.

Users of this document should satisfy themselves concerning its application to, and where necessary seek expert advice in respect to, their situation.

All work conducted and reports produced by EP Risk are based on a specific scope and have been prepared for Johnson Property Group Pty Ltd and therefore cannot be relied upon by any other third parties unless agreed in writing by EP Risk. The report(s) and/or information produced by EP Risk should not be reproduced and/or presented/reviewed except in full.

This report has been reviewed by Paul Simpson, a CEnvP SC, of EP Risk Management Pty Ltd.

Paul Simpson **Principal Environmental Scientist Certified Environmental Practitioner** Site Contamination (No. 916)

QUALITY CONTROL

	Version	Author	Date	Reviewer	Date	Quality Review	Date
F	1	N McGuire	28/07/2022	P Simpson	28/07/2022	P Simpson	28/07/2022

DOCUMENT CONTROL

Version	Date	Reference	Submitted to
1	28/07/2022	EP2743.001_JPG_Cooranbong_PFAS Assessment_v1	Johnson Property Group Pty Ltd

Melbourne Sydney Unit 22/1 Ricketts Road Level 4, 73 Walker Street Mount Waverley, Vic, 3149 North Sydney, NSW, 2060 **T** 03 8540 7300 T 02 9922 5021 ABN 81 147 147 591

Newcastle 3/19 Bolton Street Newcastle, NSW, 2300 T 02 4048 2845

W www.eprisk.com.au

Executive Summary

EP Risk Management Pty Ltd (EP Risk) was engaged by Johnson Property Group Pty Ltd (JPG) to undertake a supplementary per- and poly- fluoroalkyl substances (PFAS) Assessment (the Assessment) at 35 McCullough Street, Cooranbong, NSW (the Site). The Site is located at the former Cooranbong Recreational Aviation Centre, which is currently vacant and the former buildings have been demolished. The proposed development comprises a residential subdivision.

Based upon the previous use of the Site as an Aviation Centre, Lake Macquarie City Council requested that additional assessment of the Site for PFAS contamination be undertaken given the potential for historical fire-fighting training using aqueous film forming foam (AFFF) which have historically contained PFAS.

Fieldwork investigations comprised collection of soil samples from 20 soil hand auger locations in the immediate vicinity of the former buildings and runway, where historical firefighting activities would most likely have been undertaken. Samples were sent to a National Association of Testing Authorities (NATA) accredited laboratory for PFAS analysis.

The Site is underlain by shallow fill and topsoil between 0.1 m BGL to 0.15 m BGL overlying natural silty clay. The former runway comprises a sealed asphalt runway and concrete slabs were present in the location of the former aviation buildings.

Based upon the results of analytical testing, concentrations of PFAS in soil were below the laboratory detection limits and no exceedances of health or ecological criteria were reported. Therefore, EP Risk considers the former use of the Site as a recreational aviation facility presents a low risk of PFAS contamination to human health and the environment for the proposed residential development.

Table of Contents

	Executive Summaryi				
1 Intr	oduction	4			
1.1	Overview				
1.2	Objectives	4			
1.3	Scope of Work	4			
2 Site	Identification	5			
3 Met	hodology	6			
4 Site	Condition and Surrounding Environment	7			
4.1	Current Site Use and Layout	7			
4.2	Proposed Site Use	7			
4.3	Surrounding Land Use	7			
4.4	Topography and Drainage	7			
4.5	Geology	7			
4.6	Soil Landscapes	8			
4.7	Natural Occurring Asbestos Potential	8			
4.8	Hydrogeology	8			
4.9	Acid Sulfate Soils				
4.10	Mining Subsidence				
4.11	Contaminated Land				
4.12	State Environmental Planning Policy Protected Areas				
4.13	State Environmental Planning Policy Strategic Land Use Areas				
4.14	Heritage Items				
4.15	Contaminated Sites Notified to the NSW EPA				
4.16	Former Gasworks				
4.17	NSW EPA PFAS Investigation Program				
4.18	Waste Management Facilities and UPSS Sensitive Zones				
4.19	Licensed Activities Under the Protection of the Environment Operations Act 1997				
4.20	Delicensed Activities Still Regulated by the NSW EPA				
4.20	Former Licensed Activities under the POEO Act, now Surrendered				
4.22	Sensitive Receptors				
	vious Environmental Investigations				
5.1	EP Risk, Preliminary Site Investigation, 9 Courin Drive, Cooranbong (EP Risk, 2017)				
	ipling and Analysis				
6.1	Data Quality Objectives				
	· ·				
6.2	Sampling and Analysis Methodology				
6.3	Analytical Testing				
6.4	Field and Laboratory Quality Assurance and Quality Control (QA/QC)				
	ironmental Quality Criteria				
7.1	Soil Criteria				
	ults				
8.1	Soil Lithology				
8.2	Analytical Testing				
8.2.					
	Characterisation				
9.1	Do the concentrations of COPC exceed the relevant health-based and ecological investigatio				
	Soil?				
9.2	Is there any evidence of, or potential for, migration of contaminants off-site?				
9.3	Is Further Investigation Required?				
9.4	Is a Site Management Strategy Required?				
	ned Conceptual Site Model				
10.1	Potentially Contaminating Activities				
10.2	Affected Media				
10.3	Sensitive Receptors				
10.4	Potential Exposure Pathways				
10.5	Potential and Complete Exposure Pathways	23			

11	Conclusions and Recommendations	25

List of Tables in Body of Report

Table 1 – Site Identification	5
Table 2 – Licensed Groundwater Bores	
Table 3 – Licensed Activities Under the POEO Act	9
Table 4 – Former licensed activities under the POEO Act, now surrendered	10
Table 5 – Summary of Decision Rules	13
Table 6 – DQO, Requirements and Indicators	15
Table 7 – Analytical Testing of Primary Samples	17
Table 8 – DQI Results Summary	18
Table 9 – Adopted Soil and Sediment Criteria	20
Table 10 – Potential Source-Pathway-Receptor Linkages	24

List of Attached Figures

Figure 1Site locationFigure 2Site Layout and Sampling Locations

List of Attached Tables

- Table 2 Duplicate and Triplicate RPDs
- Table 3Rinsate and Field Blank Results

List of Appendices

Appendix A	Site Photographs
Appendix B	Bore Logs
Appendix C	Laboratory Certificates of Analysis

1 Introduction

1.1 Overview

EP Risk Management Pty Ltd (EP Risk) was engaged by Johnson Property Group Pty Ltd (JPG) to undertake a supplementary per- and poly- fluoroalkyl substances (PFAS) Assessment (the Assessment) at 35 McCullough Street, Cooranbong, New South Wales (NSW) (the Site).

The Site comprises a large irregular shaped lot formerly used as the Cooranbong Recreational Aviation Centre. A preliminary site investigation (PSI) was undertaken at the Site in 2017 (EP Risk, 2017). It is understood Council have requested a subsequent assessment of Per and Poly Fluoroalkyl Substances (PFAS) due to the emergence of PFAS as a contaminant of concern particularly around former aviation facilities. JPG are in the process of revising the development application (DA) for the proposed residential subdivision.

1.2 Objectives

The objective of the Assessment was to assess and characterise the nature and extent of PFAS contamination (if any) resulting from the operation of the former recreational aviation centre and runway.

1.3 Scope of Work

The scope of work completed to achieve the objective was:

- Review of the previous investigation undertaken at the Site
- Review of updated desktop information available for the Site in relation to PFAS contamination since the PSI was prepared in 2017.
- Site visit to observe onsite and offsite conditions and identify any areas of environmental concern.
- Preparation of all work health and safety documentation and procurement of dial before you dig information.
- Engagement of a service locator to check for underground services at and near the proposed sampling locations at the Site.
- Collection of soil samples from 20.¹ soil boring locations to a maximum of 0.5 meters below ground level (m BGL) (or prior refusal). The boreholes were advanced with a hand auger.
- At least one sample per location was collected and analysed to satisfy the NSW EPA (1995) sampling density requirements for the approximate area.
- Collection of soil samples from the top 0.1, 0.5, 1.0 and every meter thereafter, at each location, until target depth was achieved.
- Submission of samples to a National Association of Testing Authorities (NATA) accredited laboratory for selected analysis for the identified contaminants of potential concern (COPC).
- Preparation of a Supplementary PFAS Assessment report to support the DA in accordance with the NSW EPA (2020) Guideline for Consultants Reporting on Contaminated Sites, the PFAS National Environmental Management Plan 2020 (HEPA NEMP 2020) and the National Environment Protection (Assessment of Site Contamination) Measure 1999 (ASC NEPM 2013).

¹ NSW EPA (1995) Sampling Design Guidelines: minimum sampling points required for site characterisation based on detecting circular hot spots using a systematic sampling pattern.

2 Site Identification

The Site Identification details are presented in **Table 1**.

Table 1 – Site Identification	Table 1 – Site Identification		
Item	Description		
Address	35 McCullough Street, Cooranbong, NSW (Figure 1)		
Legal description	Lot 8450 DP 1250919		
Approximate area	Approximately 23.85 ha		
Owner	Johnson Property Group Pty Ltd		
Municipality	Lake Macquarie City Council		
Zoning	A mix of RE1 Public Recreation, R3 Medium Density Residential and B4 Mixed Use.		

3 Methodology

The Investigation was conducted in accordance with:

- Australian Standard AS4482.1-2005: Guide to the investigation and sampling of sites with potentially contaminated soil, Part 1: Non-volatile and semi-volatile compounds.
- Australian Standard AS4482.1-1999: Guide to the investigation and sampling of sites with potentially contaminated soil, Part 2: Volatile substances.
- Australian and New Zealand Environment and Conservation Council ('ANZECC'), Agriculture and Resource Management Council of Australia and New Zealand ('ARMCANZ') (2000) *Guidelines for Fresh and Marine Water Quality* (ANZECC 2000).
- ANZECC (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG 2018)².
- Food Standards Australia New Zealand (FSANZ) (2017), *Perfluorinated Chemicals in Food* (April 2017) (FSANZ 2017).
- Heads of EPAs Australia and New Zealand (HEPA) (2020) *PFAS National Environmental Management Plan* 2.0 (PFAS NEMP 2020).
- National Health and Medical Research Council (NHMRC) (2019) Guidance on Per and Polyfluoroalkyl (PFAS) in Recreational Water (NHMRC 2019).
- National Environment Protection Council: (NEPC) (1999) *National Environment Protection (Assessment of Site Contamination) Measure*, as amended April 2013 (ASC NEPM 2013).
- NSW EPA (2016) Designing Sampling Programs for Sites Potentially Contaminated by PFAS (NSW EPA 2016).
- NSW EPA (2016) Proposed Decision Tree for Prioritising Sites Potentially Contaminated with PFASs (NSW EPA 2016a).
- NSW Environment Protection Authority (EPA) (1995) *Sampling Design Guidelines*.
- NSW EPA (2014) *Waste Classification Guidelines: Part 1 Classifying Waste* (NSW Waste Classification Guidelines).
- NSW EPA (2015) *Guidelines on the Duty to Report Contamination under the* Contaminated Land Management Act 1997.
- NSW EPA (2017) *Guidelines for the NSW Auditor Scheme (3rd Edition)* (NSW Auditor Guidelines).
- NSW OEH (2019) Contaminated Sites, Guidelines for Consultants Reporting on Contaminated Sites.
- Simpson SL, Batley GB, Chariton AA, Stauber JL, King CK, Chapman JC, Hyne RV, Gale SA, Roach AC and Maher WA (2005) *Handbook for Sediment Quality Assessment* (CSIRO) (Simpson et. al. 2005).
- Simpson SL, Batley GB and Chariton AA (2013) *Revision of the ANZECC/ARMCANZ Sediment Quality Guidelines* (Simpson et. al. 2013).
- State Environmental Planning Policy (Resilience and Hazards) (2021) (Hazards SEPP).
- United State Environment Protection Agency (USEPA) (2006) *Guidance on Systematic Planning Using the Data Quality Objectives Process, ref: EPA QA/G-4.*

² Available at <u>www.waterquality.gov.au/anz-guidelines.</u>

4 Site Condition and Surrounding Environment

The majority of information provided in the following sections was obtained from Lotsearch Environmental Risk and Planning Report (2017). A copy of the Lotsearch (2017) report is attached as **Appendix A**.

4.1 Current Site Use and Layout

EP Risk undertook a Site inspection on 18 July 2022 comprising of a Site walkover and visual assessment. The general Site features and infrastructure observed during the inspection are presented in **Figure 2**. The Site is currently vacant with a former airstrip located in the east of the Site. The Site inspection revealed no significant changes from 2017 with the exception of some stockpiling of topsoil in the north and an access track built from Jeremiah Drive to the airstrip which is being used as a haul road for the surrounding residential developments. An area of fly-tipping, illegal rubbish dumping, was observed in the northwest of the Site. Site photos of the latest site inspection are attached as **Appendix B**.

4.2 Proposed Site Use

It is understood that the Site is to be redeveloped for a low and medium density residential subdivision with some green open space areas. The dam is to be dewatered and filled in for the redevelopment. The masterplan for the Proposed Development is provided as **Appendix C**.

4.3 Surrounding Land Use

The Site is located within an area primarily zoned for residential land use. As of 15 July 2022, surrounding land uses comprised:

- North: Vacant, vegetated land.
- South: Residential properties (under construction/development).
- East: Avondale School, and vegetated land.
- West: Residential properties (under construction/development).

4.4 **Topography and Drainage**

The general topography of the Site and surrounding area is relatively flat sloping gently to the south. The elevation of the Site is ranges from approximately 30 metres above Australian Height Datum (mAHD' in the north to 20 mAHD in the south. The Site drainage is considered to consist of overland flow carrying water south of the Site. A plan showing the topographical contours of the Site is provided within the Lotsearch (2017) Report as **Appendix A**. A small dam is present in the central portion of the Site, another small dam is located approximately 240 m to the east of the Site. Streams and tributaries of Jiggle Creek are located approximately 400 m south of the Site.

4.5 Geology

Based on the information contained in the NSW Department of Industry, Resources and Energy 1: 250,000 datasets (Lotsearch, 2017), the Site is underlain by Mesozoic-aged sandstone, interbedded sandstone and siltstone, claystone, conglomerate and sandstone of the Narrabeen Group and Clifton Subgroup.

4.6 Soil Landscapes

Based on the soil landscapes data sourced from the NSW OEH (Lotsearch, 2017) the on-site soil landscape has been identified as Doyalson. The Doyalson soil landscape is erosional and is characterised by gently undulating rises on Monmorah Conglomerate with moderately deep yellow earths, yellow podzolic soils and soloths.

4.7 Natural Occurring Asbestos Potential

No reported naturally occurring asbestos potential has been identified within 1 km of the Site.

4.8 Hydrogeology

A search of the NSW Department of Primary Industries - Office of Water / Water Administration Ministerial Corporation undertaken by Lotsearch (2017) indicated that there were no registered groundwater bores located at the Site and five registered groundwater bores located within 2 km of the Site. The information for the 26 registered groundwater bores located within a 500 m radius of the site is presented in **Table 2**.

Table 2 – Lic	Table 2 – Licensed Groundwater Bores					
Bore Number	Purpose	Installation Date	Bore Depth (m BGL³)	SWL⁴	Distance from Site	Direction from Site
GW200765	Domestic	12/10/1980	8.00	6.00	744 m	South
GW064116	Domestic, stock	1/03/1987	21.30	-	916 m	South
GW057310	Farming	1/05/1982	61.00	-	1,520 m	North
GW064033	Domestic, Stock	1/03/1987	49.40	-	1,937 m	Southeast
GW067263	Domestic, stock	20/03/1989	10.00	3.00	1,974 m	Southwest

Further details of the lithology encountered during installation of the groundwater bores are provided in the Lotsearch (2017) report provided as **Appendix A**. Review of the Hydrogeology Map of Australia, Lotsearch (2017) identified fractured or fissured, extensive aquifers of low to moderate productivity are present onsite.

4.9 Acid Sulfate Soils

The Lake Macquarie LEP does not identify the Site to be within an area containing potential acid sulfate soils.

4.10 Mining Subsidence

Lotsearch (2017) identified the West Lake mining subsidence district located approximately 940 m east of the Site.

4.11 Contaminated Land

The Contaminated Land Management Act 1979 (CLM Act) is not applicable to the land.

4.12 State Environmental Planning Policy Protected Areas

No State Environmental Planning Policy protected area has been identified at the Site or within 1 km of the Site.

³ m BGL – metres below ground level.

⁴ SWL - surface water level (m BGL).

4.13 State Environmental Planning Policy Strategic Land Use Areas

The Biophysical Strategic Agricultural Land has been identified approximately 860 m west of the Site.

4.14 Heritage Items

No state heritage Items have been identified at the Site or within 1km of the Site. One local heritage item (a cottage) has been identified in the Lake Macquarie LEP approximately 680 m south of the Site.

4.15 Contaminated Sites Notified to the NSW EPA

As of 1 August 2017, the Site is not on the NSW EPA database for Contaminated Sites notified to the NSW EPA in accordance with the CLM Act. There are no records of Notices for sites located within 1 km of the Site, except for one site (former poultry farm) which is located approximately 700 m to the southwest of the Site has been notified to the EPA. Further details of the notifications are provided in the Lotsearch (2017) report in **Appendix A**.

4.16 Former Gasworks

No former gasworks are located within 1 km of the Site.

4.17 NSW EPA PFAS Investigation Program

There are no records of sites that are part of the NSW EPA PFAS investigation program within 2 km of the Site.

4.18 Waste Management Facilities and UPSS Sensitive Zones

There are no records of waste management facilities within 1 km of the Site. The underground petroleum storage system (UPSS) regulated environmentally sensitive zone is located approximately 400 m to the east of the Site.

4.19 Licensed Activities Under the Protection of the Environment Operations Act 1997

A summary of the licensed activities under the *Protection of the Environment Operations Act 1997* (POEO Act) being undertaken within 1 km of the Site is provided in **Table 3**.

Table 3	Table 3 – Licensed Activities Under the POEO Act				
EPL ⁵ Organisation		Activity	Distance from Site		
6332	Lake Macquarie City Council	Other activities	Onsite		
3957	Forestry Corporation of New South Wales	Logging operations	664 m west		

4.20 Delicensed Activities Still Regulated by the NSW EPA

No delicensed activities still regulated by the NSW EPA have been identified within 1 km of the Site.

⁵ EPL – environment protection license

4.21 Former Licensed Activities under the POEO Act, now Surrendered

Former licensed activities under the POEO Act, now surrendered identified onsite and within 1 km of the Site are provided in **Table 4.**

Table 4 –	Table 4 – Former licensed activities under the POEO Act, now surrendered				
Licence No. Organisation		Location	Activity	Distance from Site	
4653	Luhrmann Environment Management Pty Ltd		Application of herbicides	Onsite	
4838	Robert Orchard	Waterways throughout NSW			
6630	Sydney Weed and Pest	0			
	Management Pty Ltd				

4.22 Sensitive Receptors

Sensitive receptors identified at and in the vicinity of the Site are considered to be:

- Future residential users of the Site (PFAS NEMP 2020 human health screening values low density residential).⁶.
- Terrestrial fauna and flora at the Site (PFAS NEMP 2020 interim soil ecological direct and indirect exposure).

⁶ Low density residential criteria were adopted to be protective of potential future users in a low density residential setting. This includes school children, staff, recreational users and subsurface maintenance workers.

5 Previous Environmental Investigations

EP Risk previously prepared a PSI report in 2017 which addressed other potential contaminants at the Site. A summary of the report is provided below.

5.1 EP Risk, Preliminary Site Investigation, 9 Courin Drive, Cooranbong (EP Risk, 2017)

The report presents the findings of a PSI undertaken at the Site, located at 35 McCullough Street, Cooranbong, NSW (formely known as 9 Courin Drive, Cooranbong). The Site is approximately 18 ha and it is understood that JPG was proposing to redevelop the Site into a low and medium density residential subdivision and a PSI was required for the Development Application process.

The Site history review indicated that the Site was used for recreational aviation activities since prior to the mid 1950s. The site inspection identified a fly-tipping area in the northwest of the Site and potential ACM fragments on the surface of the Site in the northeast.

Based on the results of the analytical testing, the individual or 95% UCL soil concentrations of the COPC were reported below the adopted criteria for low density residential land use. Chrysotile and amosite asbestos were detected in the two potential ACM samples collected in the northeast from the surface of the Site.

Based on the findings of the PSI, EP Risk recommends the following:

- All stored anthropogenic materials from the flytipping areas should be removed from the Site during redevelopment.
- Removal, off-site disposal and clearance of the ACM fragments in the northeast of the Site.
- Prepare and implement an unexpected finds protocol during redevelopment.

Based on the results of the Site history review, Site inspection and analytical results, the Site is considered to present a low risk of contamination. The results of soil analytical testing have been reported at levels that would not preclude the proposed future use of the site as a low and medium density residential subdivision, subject to completion of the recommended works above.

6 Sampling and Analysis

6.1 Data Quality Objectives

To assess whether an appropriate sampling strategy was adopted for the Investigation, EP Risk adopted the data quality objectives (DQOs) planning process as:

- Recommended in the ASC NEPM 2013.
- Required within the NSW EPA (2017) Auditor Guidelines.
- With consideration to technical details outlined in United State Protection Agency: Guidance on Systematic Planning Using the Data Quality Objectives Process, ref: EPA QA/G-4 (US EPA, 2006) and AS 4482.1 2005, Guide to the investigation and sampling of sites with potentially contaminated soil – Part 1: Non-volatile and semi-volatile compounds.

State the Problem

The objectives of the Investigation are to assess whether PFAS contamination is present at the Site as a result of operation of the former Cooranbong Recreational Aviation Centre.

Identify the Decision

To assess the soil at the Site, the following decisions need to be addressed:

- Do the concentrations of COPC in the soil exceed the relevant health-based and ecological investigation levels?
- Is there any evidence of, or potential for, migration of contaminants off-site?
- Is further investigation required?
- Is a management plan required?

Identify Inputs into the Decision

The inputs required to make the decision include the following:

- Site history investigation.
- Previous environmental investigations.
- Site visit and observations of contamination staining, odours etc.
- Environmental data as collected by sampling and analysis of soil samples and site observations made during this investigation.
- Assessment criteria to be achieved at the Site as based on the intended land use and project objectives, as defined by the Tier 1 assessment criteria nominated in Section 8. Confirmation the data generated by sampling and analysis is of an acceptable quality to allow reliable comparison to assessment criteria as undertaken by assessment of quality assurance / quality control (QA/QC) as per the data quality indicators (DQIs) established in Section 6.1.

Г

Define the Boundaries of the Study

The spatial boundaries of the assessment comprise Lot 8450 DP1250919 however the soil sampling was limited to the area of the Site immediately surrounding the former hangar and runway locations. It was considered that these are the areas with the highest risk of PFAS contamination from the operation of the former Aviation Centre where PFAS storage and firefighting activities are usually undertaken. The maximum proposed depth for the investigation was set at 1.0 m BGS with the approximate boundaries identified in **Figure 1**.

Develop a Decision Rule to Identify the Decision

Laboratory analytical data was assessed against EPA endorsed criteria as identified in **Section 7**. The decision rules adopted to answer the decisions identified above are summarised in **Table 5** below:

Table 5 – Summary of Decision Rules				
Decision	Rule			
1. Does the concentration of COPC in the soil exceed the relevant health- based and ecological investigation levels?	The nature and extent of soil impacts was assessed, and soil analytical data was compared against the adopted health and ecological criteria (refer to Sections 8.1). The following statistical criteria was adopted with respect to soil: Either: the reported concentrations are all below the adopted site criteria; Or: the average site concentration for each analyte must be below the adopted site criterion; no single analyte concentration exceeds 250% of the adopted site criteria. And: the 95% upper confidence limit (UCL _{mean}) of the average concentration for each analyte must be below. If the statistical criteria stated above are satisfied, and an assessment of risk indicates no unacceptable risks, the decision is No. Otherwise, the decision is Yes.			
3. Is there any evidence of, or potential for, migration of contaminants off-site?	Are contaminants present within natural soil near the boundary of the Site at concentrations exceeding the adopted site criteria? If yes, the answer to the decision is Yes. Otherwise, the answer to the decision is No. And/or If groundwater and/or surface water analytical results exceed the adopted site assessment criteria and the downgradient groundwater and/or surface water is impacted, the decision is yes. Otherwise, the decision is No.			
4. Is further investigation required?	If the 95% UCLs of the soil COPC are detected above the adopted Site criteria, further investigation may be required.			
5. Is a site management strategy required?	If the 95% UCLs of the soil COPC are detected above the adopted Site criteria, and a linkage between the source of contamination, pathway and receptor is complete then, a site management strategy may be required.			

Specify Acceptable Limits of Decision Errors

The acceptable limits were as follows:

- Individual or 95% UCL_{mean} concentrations to be below the adopted criteria or background concentrations.
- 95% of the data must satisfy the DQIs which were determined for completeness, representativeness, precision and accuracy of both field and laboratory data. Therefore, the limit on the decision error was 5% that a conclusive statement may be incorrect.
- A comprehensive QA/QC program was undertaken including representative sampling and sampling at an appropriate density for the purpose of the investigation.

The acceptable limit of error for sampling techniques and laboratory analysis was defined by the DQIs as follows:

Data Representativeness

Expresses the accuracy and precision with which sample data represents a characteristic of a population or an environmental condition. Data representativeness is achieved by the collection of samples at an appropriate pattern and density as well as consistent and repeatable sampling techniques and procedures.

Completeness

Refers to, the percentage of data that can be considered valid data. The completeness goal is set at there being sufficient valid data generated during the study.

Comparability

A qualitative comparison of the confidence with which one data set can be compared to another. This was achieved through consistent sampling and analytical testing and reporting techniques.

Precision

Is a measure of the reproducibility of on measurements under a given set of conditions. The relative percent difference ('RPD') has been adopted to assess the precision of data between duplicate sample pairs according to the following equation.

$$RPD\% = \frac{[Cp - Cd]}{Cp + Cd} \times 200$$

Where: Cp = Primary sample Cd = Duplicate Sample

An acceptance criterion of \pm 50% had been adopted for field duplicates and triplicates. However, it should be noted that exceedances of these criteria are common for heterogeneous soil or fill or for low analyte concentrations.

Accuracy

Is a measure of the bias in the analytical results and can often be attributed to field contamination; insufficient preservation or sample preparation; or inappropriate analytical techniques. Accuracy of the analytical data is assessed by consideration of laboratory control samples and laboratory spikes.

The data quality objectives, requirements and indicators for the assessment are presented in Table 6.

Table 6 – DQO, Requirements and	Indicators									
DQO	Requirement	Data Quality Indicator								
Precision										
Standard operating procedures appropriate and complied with	The sampling methods comply with industry standards and guidelines	Meet requirement								
Intra-laboratory duplicates	1 per 10 samples	RPDs < 50%								
Inter-laboratory duplicates	1 per 10 samples	RPDs < 50%								
Laboratory duplicates	Minimum of 1 per batch per analyte	RPDs < 50%								
Accuracy										
Laboratory matrix spikes	1 per batch per volatile/semi-volatile analyte	Recoveries 50% to 150%								
Laboratory surrogate spikes	1 per volatile/semi-volatile analyte sample (as appropriate)	Recoveries 70% to 130%								
Laboratory control/method blank samples	At least 1 per batch per analyte tested for	Result < laboratory reporting limit								
Representativeness										
Sampling methodology - preservation	Appropriate for the sample type and analytes	Meet requirement								
Samples extracted and analysed within holding times	Specific to each analyte	Meet requirement								
Field equipment calibration	All field equipment calibrated and calibration records provided	Meet requirement								
Laboratory method blanks	At least 1 per batch per analyte tested for	Result < laboratory reporting limit								
Trip blanks	1 per lab batch for PFAS analytes	Result < laboratory reporting limit								
Field blanks	1 per lab batch for PFAS analytes	Result < laboratory reporting limit								
Comparability		·								
Sampling approach	Consistent for each sample	Meet requirement								
Analysis methodology	Consistent methodology for each sample	Meet requirement								
Handling conditions and sampler	Consistent for each sample	Meet requirement								
Field observations and analytical	Field observations to support analytical results	Meet requirement								
Consistent laboratory reporting limit	Consistent between primary and secondary laboratories	Meet requirement								
Completeness										
Sampling staff	Consistent sampling staff used.	Meet requirement								
Laboratory accreditation	NATA Accredited laboratory for methods used	Meet requirement								
Accredited methods	NATA accredited methods used appropriate for each analyte	Meet requirement								

Table 6 – DQO, Requirements and Indicators									
DQO	Requirement	Data Quality Indicator							
ASC NEPM 2013 lab methods	Lab methods consistent with the ASC NEPM 2013	Meet requirement							
Laboratory reporting limit	Laboratory reporting limit consistent and appropriate	Meet requirement							
Consistent weather / field conditions	Consistent	Meet requirement							
Chain of custody documentation	Appropriately completed	Meet requirement							
Field sampling documentation	Appropriately completed	Meet requirement							

Optimise the Design for Obtaining Data

A systematic sampling pattern was used at a reduced sampling density presented in the NSW EPA (1995) *Sampling Design Guidelines*. The reduced sampling density for each portion of the Site is provided in Table 7

Table 7 – Adopted Sampling den	sity			
Area of Environmental Concern	Area	Minimum sampling Density (NSW EPA 1995)	Adopted Sampling Density	% of Minimum Sampling Density
Hangar and recreational centre	1.5 ha.	25 sampling locations	10 sampling locations	40%
Runway and adjacent cleared land	6.5 ha	80 sampling locations	10 sampling locations	12.5%

The reduced sampling density was considered appropriate based on the level of risk of PFAS chemicals being used within each area, the location of storage and likely firefighting activities and the preliminary nature of the assessment.

6.2 Sampling and Analysis Methodology

Soil Sampling Methodology

The methodology for soil sampling was outlined as follows:

- 1 Soil samples were collected from twenty borehole locations advanced via a hand auger. The soil sampling locations are presented in **Figure 2**.
- 2 At least one sample per location will be collected to satisfy the NSW EPA (1995) sampling density requirements for the approximate area.
- 3 Soils were logged for type, colour, texture, other characteristics and indications of contamination as presented in the bore logs attached as **Appendix B**.
- 4 All sampling equipment was decontaminated with de-ionised PFAS-free water and a dedicated pair of nitrile gloves was used for each sample to prevent cross contamination.
- 5 Sufficient samples were collected and placed into laboratory prepared sampling PFAS-free plastic jars with a unique sample ID added to the label on each jar.
- 6 The sample jars were preserved in a chilled esky containing ice immediately after sampling and during shipment to the laboratories. The laboratory chain of custody documentation was completed and accompanied the samples during shipment.

6.3 Analytical Testing

EP Risk used Eurofins MGT and Envirolab Services as the primary and secondary laboratories, both of which are NATA registered for the required analysis. The laboratory analysis was undertaken in accordance with **Table 7**.

Table 8 – Analytica	l Testing of Primary Sample	25
Media	Sampling locations	Number of Analysis
Soil	20	• PFAS (30 analytes) - 26
Field Blank	1	 Water PFAS (30 analytes) – 1
Rinsate	1	 Water PFAS (30 analytes) – 1
Duplicates and Triplicates	1	Soil • PFAS (30 analytes) – 2

6.4 Field and Laboratory Quality Assurance and Quality Control (QA/QC)

An assessment of the field and laboratory DQI results is presented in **Table 8**.

Parameter	Requirement	Objective Met
Precision		Wet
Standard operating procedures appropriate and complied with	The sampling methods comply with industry standards and guidelines	Yes
Field duplicates	 1 per 10 samples; and RPDs < 50% 	Yes Yes
	• 1 per 10 samples; and	Yes
Field triplicates	• RPDs < 50%	Yes
	• Minimum of 1 per batch per analyte;	Yes
Laboratory duplicates	• RPDs < 50%; and	Yes
	 >10%, laboratory specified 	Yes
Accuracy		
Laboratory matrix spikes	• 1 per batch per volatile/semi-volatile analyte; and	Yes
	Recoveries >70% to 130%	Yes
Laboratory surrogate spikes	 1 per volatile/semi-volatile analyte sample (as appropriate); and 	Yes
	Recoveries 70% to 130%	Yes
Laboratory control samples/method blank	 At least 1 per batch for analyte tested; and 	Yes
,	• 70-130%	Yes
Representativeness		
Sample collection - preservation	Appropriate for the sample type and analytes	Yes
Field equipment calibration	All field equipment calibrated, and calibration records provided	Yes
Decontamination procedures	All sampling equipment to be decontaminated between each sample	Yes
Holding times	Samples extracted and analysed within laboratory prescribed holding times	Yes
Trip blanks	 1 per field batch for PFAS analytes; and Result < LOR. 	Yes Yes
	 1 per field batch for PFAS analytes; and 	Yes
Field blanks	 Result < LOR. 	Yes
	• At least 1 per batch per analyte tested for; and	Yes
Laboratory Method Blanks	 Result < LOR 	Yes
Completeness		
Sample logs and groundwater field sheets	Provided	Yes
Chain of custody	Provided	Yes
Sample receipt acknowledgement	Provided	Yes
Laboratory reports	Provided	Yes
Comparability		
··· ··· ··· ···		

Table 9 – DQI Results Summary		
Parameter	Requirement	Objective Met
Laboratory accreditation	NATA Accredited laboratory for methods used	Yes
Accredited methods	NATA accredited methods used appropriate for each analyte	Yes
ASC NEPM 2013 lab methods	Lab methods consistent with the ASC NEPM 2013	Yes
Laboratory reporting limit consistent and appropriate	Meet requirement	Yes
Consistent weather / field conditions	Consistent	Yes

On the basis of the information provided in **Table 8**, EP Risk considers that the DQOs for the project have been met and the data is appropriate for the purposes of this assessment.

7 Environmental Quality Criteria

7.1 Soil Criteria

For the purposes of assessing the results of analytical testing of soils at the Site, the following guidelines were considered:

- ASC NEPM 2013.
- NSW EPA Auditor Guidelines (2017).
- PFAS NEMP (2020)

EP Risk has adopted the Tier 1 Guidelines in the PFAS NEMP 2.0 (2020) in accordance with ASC NEPM 2013 and NSW EPA (2017). In accordance with the decision-making process for assessing urban redevelopment sites (Appendix A, NSW EPA, 2017), soil concentrations were compared against the following soil investigation levels (SILs):

- Health-based Criteria for the current and proposed land use: PFAS NEMP 2020 health-based screening values for low density residential land use.
- **Ecological Criteria**: The interim ecological indirect exposure guideline values were recently revised in the PFAS NEMP 2.0 (2020) to include a value independent of land use. However, in accordance with the guideline EP Risk has adopted the residential land use criteria based on the future use.
- Aesthetics: The consultant should also consider the need for remediation based on the 'aesthetic' contamination as outlined in Schedule B (1) of the ASC NEPM 2013 that states that 'there are no numeric Aesthetic Guidelines however site assessment requires balanced consideration of the quality, type and distribution of foreign material or odours in relation to the specific land use and its sensitivity'. Soil odour, discolouration and the presence of anthropogenic materials will need to be assessed during the assessment.

Table 10 – Adopted	Table 10 – Adopted Soil and Sediment Criteria												
Receptor	Guidelines	СОРС	Adopted Criteria										
Human Health	PFAS NEMP (2020)	PFOS/PFHxS and PFOA	Soil – Human health screening values for low density residential land use.										
Ecological	PFAS NEMP (2020)	PFOS and PFOA	Interim soil – Direct and indirect ecological exposure for low density residential land use.										

The adopted soil criteria for the site are presented in **Table 9**.

Currently the Site is vacant and proposed to be developed into a residential subdivision. Based on the future land use, EP Risk has adopted the guideline values for a low-density residential land use setting.

8 Results

8.1 Soil Lithology

The soil lithology across the Site generally comprised:

- FILL/TOPSOIL: Silty SAND Dark grey-black, dry, from the surface to 0.1-0.5 m BGS; overlying
- Silty CLAY: Light grey-brown, dry to moist, medium plasticity.

The former runway comprises a sealed asphalt runway and concrete slabs were present in the location of the former aviation buildings. Groundwater was not observed during the Assessment.

8.2 Analytical Testing

8.2.1 Soil

The results of soil analytical testing are contained in the analytical summary tables section at the rear of the report and the laboratory certificates of analysis are attached as **Appendix D**.

A summary of the analytical results is presented below:

PFOS, PFOA, PFHxS/PFOS

All concentrations of PFOS, PFOA and PFHxS/PFOS were reported below the laboratory limit of reporting and the adopted soil criteria.

9 Site Characterisation

Based on the decision-making process for assessing urban redevelopment sites detailed in EPA (2017) and discussed in **Section 6**, the decisions required to be made are detailed below.

- Do the concentrations of COPC in the soil exceed the relevant health-based and ecological investigation levels?
- Is there any evidence of, or potential for, migration of contaminants off-site?
- Is further investigation required?
- Is a management plan required?

9.1 Do the concentrations of COPC exceed the relevant health-based and ecological investigation levels within Soil?

No, there were no exceedances to the adopted health-based or ecological criteria in soil samples collected from the Site.

9.2 Is there any evidence of, or potential for, migration of contaminants off-site?

As there was no primary source of PFAS observed at the Site (i.e storage or firefighting training areas) and PFAS was below detection levels in soil around the former runway and hangar locations, there is no evidence of migration of contamination offsite.

9.3 Is Further Investigation Required?

Given that there is no source of PFAS, no detection of PFAS in soil at the Site and no identified offsite migration there no further investigation required.

9.4 Is a Site Management Strategy Required?

No Site management is required as PFAS was not detected at levels above the health or ecological criteria at the Site.

10 Refined Conceptual Site Model

The CSM has been refined based upon the information provided in previous sections of this report.

10.1 Potentially Contaminating Activities

The following potentially contaminating activities have been undertaken at the Site:

• Operation of the aviation centre potentially containing PFAS firefighting foams.

10.2 Affected Media

The potential affected media at the Site is soil.

10.3 Sensitive Receptors

Potential sensitive receptors identified onsite were:

- Future residential users of the Site (PFAS NEMP 2020 human health screening values low density residential).⁷.
- Terrestrial fauna and flora at the Site (PFAS NEMP 2020 interim soil ecological indirect exposure).

10.4 Potential Exposure Pathways

Potential transport pathways for contaminants to the identified health-based receptors include:

- Incidental ingestion of PFAS impacted soil.
- Ingestion of dust containing PFAS impacted soil.
- Dermal contact with PFAS impacted soil.

Potential transport pathways for contaminants to the identified ecological receptors include:

- Direct contact with impacted soil.
- Bioaccumulation and biomagnification

10.5 Potential and Complete Exposure Pathways

An analysis of the potential exposure pathways between the COPC and the identified human and ecological receptors are presented in **Table 10**.

⁷ Low density residential criteria was adopted to be protective of potential future users in a low density residential setting. This includes school children, staff, recreational users and subsurface maintenance workers.

Linkages

Not Complete

Table 11 – Potential Source-Pathway-Receptor Linkages Sources Pathways Receptors Transport Affected Media Primary Secondary Contaminants Exposure Pathways Mechanisms • future residents at the Human Health Site incidental ingestion Not Complete Spills and leaks Sub-surface • • dermal contact AFFF (containing from storage areas maintenance workers PFOS, PFOA, PFAS) storage and Soil and AFFF draining Impacted soil PFHxS firefighting to exposed soil Ecological

areas

Dermal contact

and

٠

bioaccumulation

biomagnification

• Terrestrial fauna and

adjoining land

flora at the Site and on

Supplementary Per- and Poly-fluoroalkyl Substances (PFAS) Assessment 35 McCullough Street, Cooranbong, NSW Johnson Property Group Pty Ltd

Comments

No detection of PFOS, PFHxS or PFOA were observed in the soil samples and therefore the pathway is not complete.

No detection of PFOS, PFHxS or PFOA were observed in the soil samples and therefore the pathway is not complete.

11 Conclusions and Recommendations

This report presents the findings of a PFAS Investigation undertaken at 35 McCullough Street, Cooranbong, NSW. The Site is a large irregular shaped lot owned by JPG. It is understood the Site is proposed to be redeveloped into a residential subdivision.

EP Risk were engaged to undertake a Supplementary PFAS Assessment to assist in the preparation of the development application (DA).

Fieldwork investigations for the Supplementary PFAS Assessment comprised the following:

- Collection of soil samples from 20 soil boring locations to a maximum of 1 metre below ground level (m BGL) (or prior refusal). The boreholes were advanced using a hand auger.
- At least one sample per location were collected to satisfy the NSW EPA (1995) sampling density requirements for the approximate area.
- Submit samples to a National Association of Testing Authorities ('NATA') accredited laboratory for selected analysis for the identified COPC.

The Site is underlain by shallow fill between 0.1 m BGL to 0.15 m BGL overlying natural silty clay. The former runway comprises a sealed asphalt runway and concrete slabs were present in the location of the former aviation buildings.

Based upon the results of analytical testing, concentrations of PFAS in soil were below the laboratory detection limits and no exceedances of health or ecological criteria were reported. Therefore, EP Risk considers the former use of the Site as a recreational aviation facility presents a low risk of PFAS contamination to human health and the environment for the proposed residential development.

EP RISK

www.eprisk.com.a

Supplementary PFAS Assessment 35 McCullough Street, Cooranbong, NSW

Figure 1 - Site Location

Job No: EP2743 Date: 22/07/2022 Drawing Ref: Figure 1 Version No: v1

Coordinate System: MGA 56 Drawn by: LK Checked by: NM Scale of regional map not shown Source: Near Maps

QMS Certification Service

QMS Certification Se

www.eprisk.com.a

Supplementary PFAS Assessment 35 McCullough Street, Cooranbong, NSW

Figure 2 - SiteLayout and Sampling Locations

Job No: EP2743 Date: 22/07/2022 Drawing Ref: Figure 2 Version No: v1

Coordinate System: MGA 56 Drawn by: LK Checked by: NM Scale of regional map not shown Source: Near Maps

QMS Certification Services QMS Certification Services

s QMS Certification Service

Analytical Tables

C EP RISK

Table 1 - Analytical Summary Table

		6				Perfluoroalkane Carboxvlic Acids (n.2) Fluorotelomer Sulfonic Acids Perfluoroalkane Sulfonic									ŵ																						
				1	1	Perfluoro	alkane Carbo	oxylic Acids	1			1	(n:2) Fluorotelor	ner Sulfonic	Acids			Perfluor	oalkane Sulfo	nic Acids		1			Perfluor	oalkyl Sulfor	namides		1	_		PFAS	s ~	s		Inorganics
		Perfluorobutanoic acid (PFBA)	Perfluorohexanoic acid (PFHxA)	Perfluoropentanoic acid (PFPeA)	Perfluoroheptanoic acid (PFHpA)	Perfluorooctanoic acid (PFOA)	Perfluorodecanoic acid (PFDA)	Perfluorododecanoic acid (PFDoDA)	Perfluorononanoic acid (PFNA)	Perfluorotetradecano c acid (PFTeDA)	Perfluorotridecanoic acid (PFTrDA)	Perfluor oundecanoic acid (PFU nDA)	4:2 Fluorotelomer suffonic acid (4:2 FTS)	6:2 Fluorotelomer suffonic acid (6:2 FTS)	8:2 Fluorotelomer suffonic acid (8:2 FTS)	10:2 Fluorotelomer suffonic acid (10:2 FTS)	Perfluoropropanesulf onic acid (PFPrS)	Perfluor obutane suffonic acid (PFBS)	Perfluor opentane sulfonic acid (PFPeS)	Perfluorohexane sulfonic acid (PFHxS)	Perfluor oheptane suffonic acid (PFHpS)	Perfluorooctane suffonic acid (PFOS)	Perfluorodecane suffonic acid (PFDS)	Perfluorooctane sulfonamide (FOSA)	N-Methyl perfluorooctane suffonamide (MeFOSA)	N-Metnyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	N-methyl perfluorooctane sulfonamidoethanol (MeFOSE)	N-Ethyl perfluorooctane sulfonamide (EtFOSA)	N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	Perfluorononanesulfo nic acid (PFNS)	Sum of PFHxS and PFOS	Sum of PFAS	Sum of PFAS (WA DEF List)	Sum of enHealth PFAS (PFHxS + PFOS + PFOA)	Sum of PFAS (PFOS + PFOA)	Moisture Content (dried @ 103°C)
(mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg			mg/kg			mg/kg		mg/kg			mg/kg	mg/kg	mg/kg			mg/kg					mg/kg		mg/kg	μg/kg					mg/kg	%
EQL		0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.01	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.01	0.005	0.005	0.01	0.005	5	0.005	0.05	0.01	0.005	0.005	1
	logical direct exposure logical indirect exposure					10																1 0.01										 +					
	idential with garden/accessible s	oil (HIL A)				0.1																0.01										0.007					
4																								-11							JI						
Field ID	Date	w											w											- i							v						
BH01_0.2	18/07/2022	< 0.005		< 0.005	< 0.005	< 0.005	< 0.005			< 0.005	< 0.005	<0.005	< 0.005	< 0.01	< 0.005		< 0.005	< 0.005	< 0.005				< 0.005	< 0.005		<0.01	< 0.005	< 0.005	< 0.01	<0.005	<5	<0.005	< 0.05			< 0.005	18
BH01_0.05 BH02 0.05	18/07/2022 18/07/2022	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	<0.01 <0.01	<0.005	<5	<0.005	<0.05	<0.01		<0.005	6.2 9.8
BH02_0.05 BH02 0.15	18/07/2022	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	<0.01	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.01	<0.005	<0.005	<0.01	<0.005	<5	<0.005	<0.05	<0.01		<0.005	9.8
BH03 0.05	18/07/2022	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	<5	<0.005	<0.05	<0.01		< 0.005	20
BH03_0.5	18/07/2022	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.01	<0.005	< 0.005	<0.01	<0.005	<5	< 0.005	<0.05	<0.01	<0.005	<0.005	16
BH04_0.3	18/07/2022	<0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.01	<0.005	<0.005	< 0.01	<0.005	<5	<0.005	<0.05	<0.01		<0.005	17
BH04_0.05	18/07/2022	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005		< 0.005	<0.005	<0.005	< 0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005		<0.01	<0.005	<0.005	< 0.01	<0.005	<5	<0.005	<0.05	<0.01		<0.005	31
BH05_0.3	18/07/2022	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.01	< 0.005	< 0.005	<0.01	<0.005	<5	<0.005	<0.05	<0.01	10.005	< 0.005	18
BH05_0.05 BH06 0.2	18/07/2022 18/07/2022	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	<0.01	<0.005	<5	<0.005	<0.05	<0.01		<0.005	32
BH06_0.2 BH06_0.05	18/07/2022	< 0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005		< 0.005	<0.005	<0.005	<0.005	< 0.01	< 0.005		<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005		<0.01	<0.005	<0.005	<0.01	<0.005	<5	<0.005	<0.05	<0.01		<0.005	14
BH07 0.05	18/07/2022	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.01	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	<0.01	< 0.005	<5	<0.005	<0.05	<0.01		<0.005	35
BH08_0.05	18/07/2022	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.01	< 0.005	< 0.005	< 0.01	<0.005	<5	< 0.005	< 0.05	<0.01		< 0.005	8.1
BH08_0.15	18/07/2022	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.01	<0.005	< 0.005	< 0.01	<0.005	<5	< 0.005	<0.05	<0.01	<0.005	< 0.005	16
BH10_0.05	18/07/2022	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005		< 0.005	<0.005	<0.005	< 0.005	<0.01	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005		<0.01	<0.005	<0.005	< 0.01	<0.005	<5	<0.005	<0.05	<0.01		<0.005	20
BH11_0.05	18/07/2022	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.01	< 0.005	< 0.005	<0.01	<0.005	<5	<0.005	<0.05	<0.01		< 0.005	18
BH12_0.05 BH13 0.05	18/07/2022 18/07/2022	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	<0.01	<0.005	<5	<0.005	<0.05	<0.01		<0.005	16
BH13_0.05 BH14 0.05	18/07/2022	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		< 0.005	<0.005	<0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.01	< 0.005	<0.005	<0.01	<0.005	<5	<0.005	<0.05	<0.01		<0.005	6.8
BH15 0.05	18/07/2022	< 0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.01	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.01	<0.005	< 0.005	<0.01	< 0.005	<5	<0.005	<0.05	<0.01		<0.005	7.1
BH16_0.05	18/07/2022	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005		< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.01	< 0.005	< 0.005	< 0.01	<0.005	<5	< 0.005	< 0.05	<0.01		< 0.005	6.8
BH17_0.05	18/07/2022	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.01	<0.005	< 0.005	< 0.01	<0.005	<5	< 0.005	<0.05	<0.01	<0.005	< 0.005	12
BH18_0.05	18/07/2022	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.01	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.01	<0.005	<0.005	< 0.01	<0.005	<5	<0.005	<0.05	<0.01	<0.005	<0.005	13
BH19_0.05	18/07/2022	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.01	< 0.005	< 0.005	< 0.01	<0.005	<5	<0.005	<0.05	<0.01		< 0.005	13
BH20_0.05 OC01	18/07/2022 18/07/2022	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	< 0.01	<0.005	<5 <5	<0.005	<0.05	<0.01		<0.005	16 34
0003	18/07/2022	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01 <0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.005 <0.005	<0.01	<0.005	<5	<0.005	<0.05	<0.01		<0.005	8.4
0,005	10/07/2022	10.005	40.000	10.005	10.005	10.000	10.005	10.005	10.005	10.000	40.005	40.005	40.000	40.01	40.005	40.000	10.005	10.005	10.005	10.005	10.000	10.005	10.005	40.005	40.000	10.01	10.005	40.005	40.01	10.005		10.005	10.05	10.01	10.005	10.005	0.4
Statistics																																					
Number of Results		28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28
Number of Detects		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	28
Minimum Concentration	ion	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005		<0.01	<0.005	<0.005	<0.01	<0.005	<5	<0.005	<0.05	<0.01		<0.005	6.2
Minimum Detect		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.2
Maximum Concentrati Maximum Detect	tion	<0.005 ND	<0.005 ND	<0.005 ND	<0.005 ND	<0.005 ND	<0.005 ND	<0.005 ND	<0.005 ND	<0.005 ND	<0.005 ND	<0.005 ND	<0.005 ND	<0.01 ND	<0.005 ND	<0.005 ND	<0.005 ND	<0.005 ND	<0.005 ND	<0.005 ND	<0.005 ND	<0.005 ND	<0.005 ND	<0.005 ND	<0.005 ND	<0.01 ND	<0.005 ND	<0.005 ND	<0.01 ND	<0.005 ND	<5 ND	<0.005 ND	<0.05 ND	<0.01 ND	<0.005	<0.005 ND	35
Average Concentration	n *	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025		0.0025	0.0025	0.0025	0.0025	0.005	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025		0.005	0.0025	0.0025	0.005	0.0025	2.5					0.0025	16
Median Concentration		0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.005	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.005	0.0025	0.0025	0.005	0.0025	2.5	0.0025	0.025			0.0025	16
Standard Deviation *		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8.2
95% UCL (Student's-t) '	*	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.005	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.005	0.0025	0.0025	0.005	0.0025	2.5	0.0025	0.025	0.005	0.0025	0.0025	19.01
% of Detects		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100
% of Non-Detects		100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	0
* A Non Detect Multipl	blier of 0.5 has been applied.																																				

Environmental Standards HEPA, January 2020, PFAS NEMP 2020 Ecological direct exposure HEPA, January 2020, PFAS NEMP 2020 Ecological indirect exposure HEPA, January 2020, PFAS NEMP 2020 Residential with garden/accessible soil (HIL A)

C EP RISK

						Perfluoro	alkane Carbo	oxylic Acids					(n:	2) Fluorotelo	mer Sulfoni	c Acids			Perfluor	oalkane Sulf	onic Acids			Perfluoroalkyl Sulfonamides								PF	AS		· · · · ·	Inorganics	
		Perfluorobutanoic acid (PFBA)	Perfluoroh exanoic acid (PFHxA)	Perfluoropentanoic acid (PFPeA)	Perfluoroheptanoic acid (PFHpA)	Perfluorooct anoic acid (PFOA)	Perfluorod ecanoic acid (PFDA)	Perfluorododecanoic acid (PFDoDA)	Perfluoron onanoic acid (PFNA)	Perfluorot et rad ecanoi c acid (PFTeDA)	Perfluorotridecanoic acid (PFTrDA)	Perfluoroundecanoic acid (PFUnDA)	4:2 Fluor otelo mer sulfonic acid (4:2 FTS)	6:2 Fluor otelo mer sulfonic acid (6:2 FTS)	8:2 Fluor otelo mer sulfonic acid (8:2 FTS)	10:2 Fluorotelomer sulfonic acid (10:2 FTS)	Perfluoropropanesulf onic acid (PFPrS)	Perfluorobutane sulfonic acid (PFBS)	Perfluoropentane sulfonic acid (PFPeS)	Perfluoroh exane sulfonic acid (PFHxS)	Perfluoroh eptane sulfonic acid (PFHpS)	Perfluoroo ct ane sulfonic acid (PFOS)	Perfluorodecane sulfonic acid (PFDS)	Perfluoroo¢ane sulfonamide (FOSA)	N-Methyl perfluorooctane sulfonamide (MeFOSA)	N- Methyl perfluorooct ane sulfona midoa cetic acid (MeFOSAA)	N-methyl perfluorooctane sulfonamidoethanol (MeFOSE)	N-Ethyl perfluorooct ane sulfonamide (Et FOSA)	N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	N-Ethyl Perfluorooctane sulfonamidoethanol (EtFOSE)	Perfluoron on an esulfo nic acid (PFNS)	Sum of PFHxS and PFOS	Sum of PFAS	Sum of PFAS (WA DER List)	Sum of enHealth PFAS (PFHxS + PFOS + PFOA)	Sum of PFAS (PFOS + PFOA)	Moisture Content (dried @ 103°C)
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	µg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%
EQL		0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.01	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.01	0.005	0.005	0.01	0.005	5	0.005	0.05	0.01	0.005	0.005	1
Field ID	Date																																				
BH07_0.05	18/07/2022	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	<5	< 0.005	< 0.05	< 0.01	< 0.005	< 0.005	35
QC01	18/07/2022	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	<0.005	< 0.01	< 0.005	<5	< 0.005	< 0.05	< 0.01	< 0.005	<0.005	34
	RPD	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		- I	-
QC02	18/07/2022	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	<5	< 0.005	< 0.05	< 0.01	< 0.005	< 0.005	34
	RPD	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			I	-
BH16_0.05	18/07/2022	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	<5	< 0.005	< 0.05	< 0.01	< 0.005	< 0.005	6.8
QC03	18/07/2022	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	<5	< 0.005	< 0.05	< 0.01	< 0.005	< 0.005	8.4
	RPD	-			-		-		-	-			-		-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-		-			-
QC04	18/07/2022	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.01	< 0.005	<5	< 0.005	< 0.05	< 0.01	< 0.005	<0.005	8.4
	RPD	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	(- I	-

EP2743 -	Supplementary	PFAS	Assessment

CEP RISK

			Perfluoroalkane Carboxylic Acids										(n:	2) Fluorotelor	mer Sulfonic	Acids	Perfluoroalkane Sulfonic Acids								Perfluoroalkyl Sulfonamides									
		Perfluor obutanoic acid (PFBA)	Perfluor ohexanoic acid (PFHxA)	Perfluor opentanoic acid (PFPeA)	Perfluor oheptanoic acid (PFHpA)	Perfluorooctanoic acid (PFOA)	Perfluorodecanoic acid (PFDA)	Perfluorododecanoic acid (PFDoDA)	Perfluorononanoic acid (PFNA)	Perfluorotetradecano ic acid (PFT eDA)	Perfluorotridecanoic acid (PFTrDA)	Perfluoroundecanoic acid (PFUnDA)	4:2 Fluorotelomer sulfonic acid (4:2 FTS)	6:2 Fluorotelomer sulfonic acid (6:2 FTS)	8:2 Fluorotelomer sulfonic acid (8:2 FTS)	10:2 Fluorotelomer sulfonic acid (10:2 FTS)	Perfluoropropanesulf onic acid (PFPrS)	Perfluor obutane sulfonic acid (PFBS)	Perfluoropentane sulfonic acid (PFPeS)	Perfluorohexane sulfonic acid (PFHxS)	Perfluoroheptane sulfonic acid (PFHpS)	Perfluorooctane sulfonic acid (PFOS)	Perfluorodecane sulfonic acid (PFDS)	Perfluorooctane sulfonamide (FOSA)	N-Methyl perfluorooctane sulfonamide (MeFOSA)	N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	N-methyl perfluorooctane sulfonamidoethanol (MeFOSE)	N-Ethyl Perfluorooctane sulfonamide (EtFOSA)	N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	Perfluor ononanesulfo nic acid (PFNS)	Sum of PFHxS and PFOS		
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L	μg/L		
EQL		0.05	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.05	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.00001	0.01		
Field ID	Date																																	
FB01	18/07/2022	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.00001	< 0.01		
RW01	18/07/2022	<0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.00001	<0.01		

EP2743 - Supplementary PFAS A	Assessment
-------------------------------	------------

PFAS				
Sum of PFHxS and PFOS	Sum of PFAS	Sum of PFAS (WA DER List)	Sum of enHealth PFAS (PFHxS + PFOS + PFOA)	Sum of PFAS (PFOS + PFOA)
μg/L	μg/L	μg/L	μg/L	μg/L
0.01	0.1	0.05	0.01	0.01
< 0.01	<0.1	< 0.05	< 0.01	< 0.01
<0.01	<0.1	<0.05	< 0.01	< 0.01

north showing a topsoil stockpile

Soil Logging Symbols

CLAYS		Definition	SEDIMENTA	RY ROCK	Definition
	CLAY	USCS – CH	· · · · · · · · · · · · · · · · · · ·	SANDSTONE	BGS - SNDST
	silty CLAY	USCS – OH		SILTSTONE	BGS - SLTST
	sandy CLAY	USCS – CL		SHALE	BGS - SHALE
	gravelly CLAY	USCS – GC		CONGLOMERATE	BGS - CONG
SILTS			FILL		
	SILT	USCS – ML		FILL	OTHER – 01
	clayey SILT	USCS – OL	· ^ · . < · · · · >	CONCRETE	BKFL-41
	sandy SILT	USCS – SM		ASPHALT	OTHER – 04
0.000	gravelly SILT	USCS – GM		TER WELL	
SANDS				WELL SCREEN	BKFL-31
	SAND	USCS – SW		CASING – filter pack	BKFL-31
	clayey SAND	USCS – SC		CASING – backfill	BKFL-10
	silty SAND	USCS – SM		CASING – bentonite seal	BKFL-22
	gravelly SAND	USCS – SP		CASING – grout seal	BKFL-42
GRAVELS			Source Contract		
	GRAVEL	USCS – GW		BACKFILL	BKFL-10
	clayey GRAVEL	USCS – GC		TOPSOIL – sandy SILT	OTHER – 05
0.000	silty GRAVEL	USCS – GM	ሻሹ ሻሹ ሻሹ 2 ሾ ላሹ ሻሹ ሳሹ	TOPSOIL – highly organic	USCS – PT
0. 0°0 .	sandy GRAVEL	USCS – GP			

Soil Logging Symbols

sandy GRAVEL

DRILLING DATE 18/07/2022 DRILLING METHOD Hand Auger TOTAL DEPTH 0.2 m LOGGED BY Mathew Cheshire CHECKED BY Nathan McGuire LATITUDE -33.063558° LONGITUDE 151.462655°

COMMENTS	COMMENTS									
Depth (m)	Samples	PID (ppm)	Analysed?	Graphic Log	Material Description	Additional Observations				
- - - 0.05 -	/BH01_0.05		M		FILL: Silty GRAVEL: Brown, dry, fine to medium gravel.					
- - 0.1 - -					Silty CLAY: Low plasticity, orange to light grey, slightly moist. Residual.					
- 0.15 - - - - - - - - - - - - - - - - - - -	/BH01_0.2		<u>/</u> Y\		End of Investigation at 0.2 m.					
- - - 0.25 - -										
- 0.3 										
- 0.35 - - - 0.4										
- - - 0.45 -										
- - 0.5 - -										
- 0.55 - - - - 0.6										
- - - - 0.65 -										
-										

DRILLING DATE 18/07/2022 DRILLING METHOD Hand Auger TOTAL DEPTH 0.2 m LOGGED BY Mathew Cheshire CHECKED BY Nathan McGuire LATITUDE -33.063287° LONGITUDE 151.462763°

COMMENTS						
Depth (m)	Samples	PID (ppm)	Analysed?	Graphic Log	Material Description	Additional Observations
- - - - - - 0.05 -	/BH02_0.05		M		FILL: Silty GRAVEL: Brown, dry, fine to medium gravel.	
	/вно2_0.15		M		Silty CLAY: Low plasticity, light brown, slightly moist. Residual.	
					End of Investigation at 0.2 m.	
- 0.25 - - - 0.3						
- - - 0.35 -						
- 0.4 						
- 0.45						
- 0.5 - - - - 0.55						
- - - 0.6 -						
- 0.65 						

NSW

PROJECT NUMBER EP2743 DRILLING DATE 18/07/2022 PROJECT NAME PFAS Assessment DRILLING METHOD Hand Auger CLIENT Johnson Property Group Pty Ltd TOTAL DEPTH 0.5 m ADDRESS 35 McCullough Street, Cooranbong

LOGGED BY Mathew Cheshire CHECKED BY Nathan McGuire LATITUDE -33.062956° LONGITUDE 151.462853°

COMMENTS						
Depth (m)	Samples	PID (ppm)	Analysed?	Graphic Log	Material Description	Additional Observations
- - - - - 0.05	/вноз_0.05		<u>/</u> ~\		TOPSOIL: Sandy SILT: Grey, dry, loose.	
- - - - -					Silty CLAY: Low plasticity, orange to light grey, slightly moist. Residual.	
- 0.15 0.2						
- 0.25						
- 0.3 						
- - 0.35 - - - - - 0.4						
- 0.45						
- - - 0.5	/BH03_0.5		\mathbb{M}		End of Investigation at 0.5 m.	
- - - - - 0.55 -					J	
- 0.6						
- - - - - - - -						

DRILLING DATE 18/07/2022 DRILLING METHOD Hand Auger TOTAL DEPTH 0.3 m LOGGED BY Mathew Cheshire CHECKED BY Nathan McGuire LATITUDE -33.062640° LONGITUDE 151.462903°

COMMENTS	COMMENTS									
Depth (m)	Samples	PID (ppm)	Analysed?	Graphic Log	Material Description	Additional Observations				
- - - - 0.05 -	/вно4_0.05		M		TOPSOIL: Sandy SILT: Grey, dry, loose.					
- - 0.1 - -					Silty CLAY: Low plasticity, orange to light grey, slightly moist. Residual.					
- 0.15 										
- - 0.25 - -										
- - 0.3 -	/BH04_0.3		<u>/</u> Y\		End of Investigation at 0.3 m.					
- - - - - -										
- 0.4 										
0.45 										
0.5 										
- 0.55 -										
- 0.6 										
- 0.65 										

DRILLING DATE 18/07/2022 DRILLING METHOD Hand Auger TOTAL DEPTH 0.3 m LOGGED BY Mathew Cheshire CHECKED BY Nathan McGuire LATITUDE -33.062569° LONGITUDE 151.462601°

COMMENTS	COMMENTS									
Depth (m)	Samples	PID (ppm)	Analysed?	Graphic Log	Material Description	Additional Observations				
- - - - - - 0.05	/вно5_0.05		M		TOPSOIL: Sandy SILT: Grey, dry, loose.					
- - - 0.1 - -					Silty CLAY: Low plasticity, orange to light grey, slightly moist. Residual.					
- - 0.15 - - - - 0.2										
- 0.25										
- - - 0.3 	/BH05_0.3		M		End of Investigation at 0.3 m.					
- 0.35 										
0.4 0.45										
 0.5										
- - - 0.55 -										
- 0.6 										
- 0.65 										

DRILLING DATE 18/07/2022 DRILLING METHOD Hand Auger TOTAL DEPTH 0.2 m LOGGED BY Mathew Cheshire CHECKED BY Nathan McGuire LATITUDE -33.062929° LONGITUDE 151.462422°

COMMENTS	COMMENTS									
Depth (m)	Samples	PID (ppm)	Analysed?	Graphic Log	Material Description	Additional Observations				
- - - - 0.05	/BH06_0.05		M		TOPSOIL: Sandy SILT: Grey, dry, loose.					
- - - 0.1 -					Silty CLAY: Low plasticity, orange to light grey, slightly moist. Residual.					
- 0.15 - - - - - - - - -	/BH06_0.2		M							
- - - 0.25					End of Investigation at 0.2 m.					
- 0.3 										
- 0.35 - - - -										
- 0.4 - - - 0.45										
- - 0.5 -										
- - - 0.55 - -										
- 0.6										
0.65 -										

DRILLING DATE 18/07/2022 DRILLING METHOD Hand Auger TOTAL DEPTH 0.2 m LOGGED BY Mathew Cheshire CHECKED BY Nathan McGuire LATITUDE -33.063292° LONGITUDE 151.462455°

COMMENTS	COMMENTS									
Depth (m)	Samples	PID (ppm)	Analysed?	Graphic Log	Material Description	Additional Observations				
- - - 0.05	/BH07_0.05		M		TOPSOIL: Sandy SILT: Grey, dry, loose.					
- - - 0.1 -					Silty CLAY: Low plasticity, orange to light grey, slightly moist. Residual.					
- 0.15 - - - - - - - - - - - - - - - - - - -	/BH07_0.2		Ā							
-					End of Investigation at 0.2 m.					
- 0.25 - - -										
- 0.3 - -										
- 0.35 - -										
- 0.4 										
_ 0.45 - -										
- 0.5 										
- 0.55 										
- 0.6 -										
- 0.65 										
-										

DRILLING DATE 18/07/2022 DRILLING METHOD Hand Auger TOTAL DEPTH 0.15 m LOGGED BY Mathew Cheshire CHECKED BY Nathan McGuire LATITUDE -33.063532° LONGITUDE 151.462258°

COMMENTS						
Depth (m)	Samples	PID (ppm)	Analysed?	Graphic Log	Material Description	Additional Observations
	/BH08_0.05		M		FILL: Silty GRAVEL: Brown, dry, fine to medium gravel.	
	/BH08_0.15		Ā		Silty CLAY: Low plasticity, orange to light grey, slightly moist. Residual.	
- 0.15 0.2 					End of Investigation at 0.15 m.	
- - - - - - - -						
- 0.3 0.35						
- 0.45 						
0.55 0.6						
- - - - - - - - -						
-						

DRILLING DATE 18/07/2022 DRILLING METHOD Hand Auger TOTAL DEPTH 0.1 m LOGGED BY Mathew Cheshire CHECKED BY Nathan McGuire LATITUDE -33.063447° LONGITUDE 151.461931°

COMMENTS	COMMENTS									
Depth (m)	Samples	PID (ppm)	Analysed?	Graphic Log	Material Description	Additional Observations				
- - - - - - - - - -	/BH09_0.05 \		M		Silty CLAY: Low plasticity, orange to light grey, slightly moist. Residual.					
- - 0.1 - -					End of Investigation at 0.1 m.					
 0.15 										
- 0.2										
- 0.25 										
- 0.3 										
- 0.35 										
- 0.4 										
- 0.45 -										
- - - 0.5 -										
- - 0.55 - -										
- 0.6 										
- 0.65 										
_										

DRILLING DATE 18/07/2022 DRILLING METHOD Hand Auger TOTAL DEPTH 0.1 m LOGGED BY Mathew Cheshire CHECKED BY Nathan McGuire LATITUDE -33.063156° LONGITUDE 151.462019°

COMMENTS	COMMENTS									
Depth (m)	Samples	PID (ppm)	Analysed?	Graphic Log	Material Description	Additional Observations				
- - - - - - - - - -	<u>/</u> BH10_0.05 \		M		Silty CLAY: Low plasticity, orange to light grey, slightly moist. Residual.					
- - 0.1 - -					End of Investigation at 0.1 m.					
- 0.15 										
- - 0.2										
 0.25 										
- - - 0.3 -										
- 0.35 										
- 0.4 										
- 0.45 										
- - - 0.5 -										
- - - 0.55 -										
- 0.6 										
 0.65 										
-										

DRILLING DATE 18/07/2022 DRILLING METHOD Hand Auger TOTAL DEPTH 0.1 m LOGGED BY Mathew Cheshire CHECKED BY Nathan McGuire LATITUDE -33.062848° LONGITUDE 151.462058°

COMMENTS	COMMENTS								
Depth (m)	Samples	PID (ppm)	Analysed?	Graphic Log	Material Description	Additional Observations			
- - - - - - 0.05 - -	<u>/BH11_0.05</u>		M		TOPSOIL: Sandy SILT: Grey, dry, loose.				
_ 0.1				<u> </u>	End of Investigation at 0.1 m.				
_ _ 0.15 _									
- - - 0.2									
- - - 0.25 -									
- - - 0.3 -									
- - 0.35 -									
- - 0.4 -									
- - 0.45 -									
- - - 0.5 -									
- - 0.55 - -									
- 0.6 									
_ _ _ 0.65 _									
_									

DRILLING DATE 18/07/2022 DRILLING METHOD Hand Auger TOTAL DEPTH 0.1 m LOGGED BY Mathew Cheshire CHECKED BY Nathan McGuire LATITUDE -33.062432° LONGITUDE 151.462032°

COMMENTS						
Depth (m)	Samples	PID (ppm)	Analysed?	Graphic Log	Material Description	Additional Observations
- - - - - - 0.05 - -	<u>/</u> BH12_0.05 \		M		TOPSOIL: Sandy SILT: Grey, dry, loose.	
_ 0.1				<u> </u>	End of Investigation at 0.1 m.	
_ _ _ 0.15 _						
- 						
- - - 0.25 -						
- - - 0.3 -						
- - 0.35 -						
- - - 0.4 -						
- - 0.45 -						
- - - 0.5 -						
- - 0.55 - -						
- - 0.6 -						
- - 0.65 -						
_						

DRILLING DATE 18/07/2022 DRILLING METHOD Hand Auger TOTAL DEPTH 0.1 m LOGGED BY Mathew Cheshire CHECKED BY Nathan McGuire LATITUDE -33.062156° LONGITUDE 151.462448°

COMMENTS						
Depth (m)	Samples	PID (ppm)	Analysed?	Graphic Log	Material Description	Additional Observations
- - - - - - 0.05 - -	/BH13_0.05		M		TOPSOIL: Sandy SILT: Grey, dry, loose.	
- - 0.1 -				<u>{ { { } } { } } </u>	End of Investigation at 0.1 m.	
- 0.15 						
- - - 0.2 -						
- - 0.25 - -						
- - 0.3 -						
- - - 0.35 -						
- 						
- - 0.45 - -						
- 0.5 						
- - 0.55 - -						
- 0.6 						
- - - 0.65 - -						

DRILLING DATE 18/07/2022 DRILLING METHOD Hand Auger TOTAL DEPTH 0.1 m LOGGED BY Mathew Cheshire CHECKED BY Nathan McGuire LATITUDE -33.061871° LONGITUDE 151.462036°

COMMENTS						
Depth (m)	Samples	PID (ppm)	Analysed?	Graphic Log	Material Description	Additional Observations
- - - - - - 0.05 -	<u>√</u> BH14_0.05		M		FILL: Silty GRAVEL: Brown, dry, fine to medium gravel.	
- - - 0.1 -				XXX	End of Investigation at 0.1 m.	
- 0.15 						
- 						
- - - 0.25 -						
- 0.3 						
- 0.35 						
- - 0.4 						
- - 0.45 						
- - - 0.5 -						
- - 0.55 -						
- - 0.6 -						
- - - 0.65 -						
-						

DRILLING DATE 18/07/2022 DRILLING METHOD Hand Auger TOTAL DEPTH 0.1 m LOGGED BY Mathew Cheshire CHECKED BY Nathan McGuire LATITUDE -33.061437° LONGITUDE 151.462246°

COMMENTS						
Depth (m)	Samples	PID (ppm)	Analysed?	Graphic Log	Material Description	Additional Observations
- - - 0.05 -	/BH15_0.05		M		FILL: Silty GRAVEL: Brown, dry, fine to medium gravel.	
- - - - - -					End of Investigation at 0.1 m.	
- 0.15 - - - 0.2						
- - - 0.25 -						
- 0.3 						
- 0.35 - - - - - - 0.4						
- - - - 0.45 -						
- 						
- 0.55 - - - -						
- 0.6 - - - 0.65						
_ _ _						

DRILLING DATE 18/07/2022 DRILLING METHOD Hand Auger TOTAL DEPTH 0.1 m LOGGED BY Mathew Cheshire CHECKED BY Nathan McGuire LATITUDE -33.060954° LONGITUDE 151.461976°

COMMENTS						
Depth (m)	Samples	PID (ppm)	Analysed?	Graphic Log	Material Description	Additional Observations
- - - - - - - - - -	/BH16_0.05		M		FILL: Silty GRAVEL: Brown, dry, fine to medium gravel.	
- - - - -				***	End of Investigation at 0.1 m.	
- 0.15 						
- - - 0.2 -						
- - 0.25 						
- 0.3 						
- 0.35 						
- 0.4 						
- 0.45 -						
- 0.5 						
- - 0.55 - -						
- 0.6 						
- 0.65 -						

DRILLING DATE 18/07/2022 DRILLING METHOD Hand Auger TOTAL DEPTH 0.1 m LOGGED BY Mathew Cheshire CHECKED BY Nathan McGuire LATITUDE -33.060363° LONGITUDE 151.462344°

COMMENTS						
Depth (m)	Samples	PID (ppm)	Analysed?	Graphic Log	Material Description	Additional Observations
- - 0.05 	<u>/</u> BH17_0.05 \		M		Silty CLAY: Low plasticity, orange to light grey, slightly moist. Residual.	
- - - - -					End of Investigation at 0.1 m.	
- - - 0.15 -						
- 0.2						
- 0.25 						
- 0.3 						
- 0.35 						
- - - 0.4 -						
- 0.45 						
- - - 0.5 -						
- - - 0.55 -						
- 0.6 						
- 0.65 						
_						

DRILLING DATE 18/07/2022 DRILLING METHOD Hand Auger TOTAL DEPTH 0.1 m LOGGED BY Mathew Cheshire CHECKED BY Nathan McGuire LATITUDE -33.059669° LONGITUDE 151.461915°

COMMENTS						
Depth (m)	Samples	PID (ppm)	Analysed?	Graphic Log	Material Description	Additional Observations
- - - - - - 0.05 - -	<u>/</u> BH18_0.05 \		M		Silty CLAY: Low plasticity, orange to light grey, slightly moist. Residual.	
_ 0.1 _ _					End of Investigation at 0.1 m.	
- 0.15 						
- - - 0.2 -						
- - - 0.25 - -						
- 0.3 						
- - 0.35 - -						
- - 0.4 -						
- 0.45 						
- 0.5 						
- 0.55 						
- 0.6 						
- 0.65 -						
_						

DRILLING DATE 18/07/2022 DRILLING METHOD Hand Auger TOTAL DEPTH 0.1 m LOGGED BY Mathew Cheshire CHECKED BY Nathan McGuire LATITUDE -33.058755° LONGITUDE 151.462280°

COMMENTS						
Depth (m)	Samples	PID (ppm)	Analysed?	Graphic Log	Material Description	Additional Observations
- - - - - - - - - -	<u>/</u> BH19_0.05 \		M		Silty CLAY: Low plasticity, orange to light grey, slightly moist. Residual.	
- - 0.1 - -					End of Investigation at 0.1 m.	
 0.15 						
- 0.2						
- 0.25 						
- 0.3 						
- 0.35 						
- 0.4 						
- 0.45 						
- 0.5 						
- 0.55 						
- 0.6 						
- 0.65 						
-						

DRILLING DATE 18/07/2022 DRILLING METHOD Hand Auger TOTAL DEPTH 0.1 m LOGGED BY Mathew Cheshire CHECKED BY Nathan McGuire LATITUDE -33.057877° LONGITUDE 151.461756°

COMMENTS						
Depth (m)	Samples	PID (ppm)	Analysed?	Graphic Log	Material Description	Additional Observations
- - - - - - - - - -	/BH20_0.05 \		M		Silty CLAY: Low plasticity, orange to light grey, slightly moist. Residual.	
- - 0.1 - -					End of Investigation at 0.1 m.	
- 0.15 -						
- 0.2						
- - - 0.25 -						
- 0.3 						
- 0.35 						
- 0.4 						
- 0.45 - -						
- - - 0.5 -						
- - 0.55 - -						
- 0.6 						
- 0.65 						

Appendix C LABORATORY CERTIFICATES OF ANALYSIS

1. . ·

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521													
Melbourne	Geelong	Sydney	Canberra										
6 Monterey Road	19/8 Lewalan Street	179 Magowar Road	Unit 1,2 Dacr										
Dandenong South	Grovedale	Girraween	Mitchell										
VIC 3175	VIC 3216	NSW 2145	ACT 2911										
Tel: +61 3 8564 5000	Tel: +61 3 8564 5000	Tel: +61 2 9900 8400	Tel: +61 2 61										
NATA# 1261 Site# 1254	NATA# 1261 Site# 1254	NATA# 1261 Site# 18217											

Brisbane cre Street 1/21 Smallwood Place Murarrie QLD 4172 6113 8091 Tel: +61 7 3902 4600

Newcastle Perth 4/52 Industrial Drive Mayfield East NSW 2304 Welshpool PO Box 60 Wickham 2293 WA 6106 Tel: +61 2 4968 8448 NATA# 1261 Site# 20794 NATA# 1261 Site# 25079 NATA# 2377 Site# 2370

www.eurofins.com.au

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd ABN: 91 05 0159 898 NZBN: 9429046024954 Auckland 46-48 Banksia Road 35 O'Rorke Road Penrose, Auckland 1061 Tel: +61 8 6253 4444 Tel: +64 9 526 45 51

IANZ# 1327

EnviroSales@eurofins.com

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290

Sample Receipt Advice

Company name:	EP Risk Management (NSW)
Contact name:	Nathan McGuire
Project name:	PFAS ASSESSMENT
Project ID:	EP2743
Turnaround time:	5 Day
Date/Time received	Jul 19, 2022 9:00 AM
Eurofins reference	906825

Sample Information

- 1 A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab. 1
- Some samples have been subcontracted. X
- N/A Custody Seals intact (if used).

Notes

Samples QC02 and QC04 forwarded to Envirolab. Two extra samples received that were not recorded on the COC. The sample IDs are BH07_0.2 and BH11_0.2. These samples have been logged and placed on hold. The sample BH09_0.05 was not received.

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Emma Beesley on phone : or by email: EmmaBeesley@eurofins.com

Results will be delivered electronically via email to Nathan McGuire - nathan.mcguire@eprisk.com.au.

Note: A copy of these results will also be delivered to the general EP Risk Management (NSW) email address.

Global Leader - Results you can trust

•		fine	Eurofins Env ABN: 50 005 08		nt Testing Australia	Pty Ltd						Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment Testing NZ Ltd NZBN: 9429046024954		
/eb: w	6 Monterey Road 19/8 Lewalan Street 179 Ma Dandenong South Grovedale Girrawe VIC 3175 VIC 3216 NSW 21				Girraween NSW 2145 Tel: +61 2	Aggowar Road Unit 1,2 Dacre Street 1/21 Smallwood Place 4/52 Investigation ween Mitchell Murarrie Mayfiel 2145 ACT 2911 QLD 4172 PO Boy 61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 Tel: +61						Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290	
Company Name: EP Risk Management (NSW) Address: Level 4 73 Walker St North Sydney NSW 2060								R	order N eport hone: ax:	EP274 90682 02 99			Received: Due: Priority: Contact Name:	Jul 19, 2022 9:00 AM Jul 26, 2022 5 Day Nathan McGuire	
	Project Name:PFAS ASSESSMENTProject ID:EP2743											Eu	rofins Analytical Serv	ices Manager : Em	ma Beesley
		Sa	Imple Detail				HOLD	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)						
Bris	bane Laborator	y - NATA # 126	1 Site # 2079	94			Х	Х	х						
	rnal Laboratory			L											
No	Sample ID	Sample Date	Sampling Time	M	atrix LAE	SID									
1	BH01_0.05	Jul 18, 2022		Soil	B22-JI00	36569		Х	Х						
2	BH01_0.2	Jul 18, 2022		Soil	B22-JI00	36570		Х	Х						
	BH02_0.05	Jul 18, 2022		Soil	B22-JI00	36571		Х	Х						
1	BH02_0.15	Jul 18, 2022		Soil	B22-JI00	36572		Х	Х						
5	BH03_0.05	Jul 18, 2022		Soil	B22-JI00	36573		Х	х						
6	BH03_0.5	Jul 18, 2022		Soil	B22-JI00	36574		Х	Х						
7	BH04_0.05	Jul 18, 2022		Soil	B22-JI00	36575		Х	х						
3	BH04_0.3	Jul 18, 2022		Soil	B22-JI00	36576		Х	х						
9	BH05_0.05	Jul 18, 2022		Soil	B22-JI00	36577		Х	Х						
10	BH05_0.3	Jul 18, 2022		Soil	B22-JI00	36578		Х	Х						
		Jul 18, 2022		Soil	B22-JI00	36579		Х	Х						
11	BH06_0.05	Jui 10, 2022		0011											
	BH06_0.05 BH06_0.2	Jul 18, 2022		Soil	B22-JI00			Х	х						

web: www.eurofins.com.au email: EnviroSales@eurofins.com		Eurofins Environn ABN: 50 005 085 521	ent Testing Australia	Pty Ltd						Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment Testing NZ Ltd NZBN: 9429046024954	
		Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000 NATA# 1261 Site# 125	Geelong Sydney 19/8 Lewalan Street 179 Mag Grovedale Girrawee VIC 3216 NSW 214		79 Magowar Road irraween SW 2145 el: +61 2 9900 8400		Canberra Unit 1,2 Dacre Stru Mitchell ACT 2911 Tel: +61 2 6113 80	Murarrie QLD 4172 91 Tel: +61 7 3902 4600	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 94 NATA# 1261 Site# 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290
Company Name: Address:	EP Risk Ma Level 4 73 North Sydn NSW 2060	еу				R P	rder No.: eport #: hone: ax:	EP2743 906825 02 99225021		Due:	Jul 19, 2022 9:00 A Jul 26, 2022 5 Day Nathan McGuire	М
Project Name: Project ID:	PFAS ASS EP2743	ESSMENT							Eu	ofins Analytical Serv	ices Manager : Em	na Beesley
	s	ample Detail			HOLD	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)					
Brisbane Laboratory	/ - NATA # 12	61 Site # 20794			Х	X	X					
14 BH08_0.05	Jul 18, 2022	Soil	B22-JI00	36582		Х	X					
15 BH08_0.15	Jul 18, 2022	Soil	B22-JI00	36583		Х	x					
16 BH10_0.05	Jul 18, 2022	Soil	B22-JI00	36584		Х	x					
17 BH11_0.05	Jul 18, 2022	Soil	B22-JI00	36585		Х	x					
I8 BH12_0.05	Jul 18, 2022	Soil	B22-JI00	36586		Х	x					
19 BH13_0.05	Jul 18, 2022	Soil	B22-JI00			Х	x					
20 BH14_0.05	Jul 18, 2022	Soil	B22-JI00			X	x					
21 BH15_0.05	Jul 18, 2022	Soil	B22-JI00	36589		Х	x					
22 BH16_0.05	Jul 18, 2022	Soil	B22-JI00			Х	x					
23 BH17_0.05	Jul 18, 2022	Soil	B22-JI00	36591		X	X					
24 BH18_0.05	Jul 18, 2022	Soil	B22-JI00	36592		Х	X					
25 BH19_0.05	Jul 18, 2022	Soil	B22-JI00	36593		Х	x					
26 BH20_0.05	Jul 18, 2022	Soil	B22-JI00	36594		х	x					
27 QC01	Jul 18, 2022	Soil	B22-JI00	36595		х	x					
	Jul 18, 2022	Soil	D 22 1100	26506		X	X					
28 QC03	JUI 16, 2022	301	B22-JI00	120290		^	~					

Eurofins Environment Testing Australia Pty Ltd ABN: 50 005 085 521 Melbourne Geelong Sydner					a Pty Ltd							Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment Testing NZ Ltd NZBN: 9429046024954	
6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216		Girrawee NSW 21 Tel: +61	179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400		Mitchell ACT 2911 00 Tel: +61 2 6113 80		Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600 NATA# 1261 Site# 2075	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 4 NATA# 1261 Site# 25079	Tel: +61 8 6253 4444	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290			
	npany Name: Iress:	EP Risk Ma Level 4 73 North Sydn NSW 2060	ey				R Pl	erder N eport hone: ax:	#: 90	22743 6825 99225021		Received: Due: Priority: Contact Name:	Jul 19, 2022 9:00 A Jul 26, 2022 5 Day Nathan McGuire	Μ
	ject Name: ject ID:	PFAS ASS EP2743	ESSMENT								Eu	rofins Analytical Serv	vices Manager : Em	ma Beesley
		s	ample Detail			HOLD	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)						
Brisb	ane Laboratory	- NATA # 12	61 Site # 20794			Х	X	Х						
30	RW01	Jul 18, 2022	Wat	er B22-JI	0036598			Х						
		Jul 18, 2022	Soil	B22-JI	0036605	X								
		Jul 18, 2022	Soil	B22-JI	0036606	Х								
Test	Counts					2	28	30						

EP Risk Management (NSW) Level 4 73 Walker St North Sydney NSW 2060

Nathan McGuire

Report
Project name
Project ID
Received Date

Attention:

906825-S PFAS ASSESSMENT EP2743 Jul 19, 2022

Client Sample ID			BH01_0.05	BH01_0.2	BH02_0.05	BH02_0.15
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			B22-JI0036569	B22-JI0036570	B22-JI0036571	B22-JI0036572
Date Sampled			Jul 18, 2022	Jul 18, 2022	Jul 18, 2022	Jul 18, 2022
Test/Reference	LOR	Unit				
	-					
% Moisture	1	%	6.2	18	9.8	14
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C4-PFBA (surr.)	1	%	103	68	104	101
13C5-PFPeA (surr.)	1	%	124	76	121	118
13C5-PFHxA (surr.)	1	%	107	70	108	107
13C4-PFHpA (surr.)	1	%	93	64	97	91
13C8-PFOA (surr.)	1	%	97	64	94	90
13C5-PFNA (surr.)	1	%	109	69	104	108
13C6-PFDA (surr.)	1	%	151	97	136	148
13C2-PFUnDA (surr.)	1	%	124	86	126	133
13C2-PFDoDA (surr.)	1	%	127	100	131	135
13C2-PFTeDA (surr.)	1	%	125	85	122	120
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N- MeFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N- EtFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
13C8-FOSA (surr.)	1	%	88	93	90	92

NATA Accredited Accreditation Number 1261 Site Number 20794

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Client Sample ID			BH01_0.05	BH01_0.2	BH02_0.05	BH02_0.15
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			B22-JI0036569	B22-JI0036570	B22-JI0036571	B22-JI0036572
Date Sampled			Jul 18, 2022	Jul 18, 2022	Jul 18, 2022	Jul 18, 2022
Test/Reference	LOR	Unit				
Perfluoroalkyl sulfonamido substances						
D3-N-MeFOSA (surr.)	1	%	127	118	118	126
D5-N-EtFOSA (surr.)	1	%	98	95	93	96
D7-N-MeFOSE (surr.)	1	%	104	95	101	107
D9-N-EtFOSE (surr.)	1	%	82	82	87	83
D5-N-EtFOSAA (surr.)	1	%	155	30	152	140
D3-N-MeFOSAA (surr.)	1	%	110	15	99	96
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
13C3-PFBS (surr.)	1	%	125	80	124	126
18O2-PFHxS (surr.)	1	%	114	81	101	102
13C8-PFOS (surr.)	1	%	133	101	144	137
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 $FTSA$) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid(6:2 FTSA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)^{N11} $\label{eq:stars}$	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)^{N1}	5	ug/kg	< 5	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	137	39	123	93
13C2-6:2 FTSA (surr.)	1	%	105	38	98	72
13C2-8:2 FTSA (surr.)	1	%	100	64	105	97
13C2-10:2 FTSA (surr.)	1	%	98	74	103	104
PFASs Summations						
Sum (PFHxS + PFOS)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of WA DWER PFAS (n=10)*	10	ug/kg	< 10	< 10	< 10	< 10
Sum of PFASs (n=30)*	50	ug/kg	< 50	< 50	< 50	< 50

Client Sample ID			BH03_0.05	BH03_0.5	BH04_0.05	BH04_0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			B22-JI0036573	B22-JI0036574	B22-JI0036575	B22-JI0036576
Date Sampled			Jul 18, 2022	Jul 18, 2022	Jul 18, 2022	Jul 18, 2022
Test/Reference	LOR	Unit				
% Moisture	1	%	20	16	31	17

Client Sample ID Sample Matrix			BH03_0.05 Soil	BH03_0.5 Soil	BH04_0.05 Soil	BH04_0.3 Soil
•						
Eurofins Sample No.			B22-JI0036573		B22-JI0036575	B22-JI0036576
Date Sampled			Jul 18, 2022	Jul 18, 2022	Jul 18, 2022	Jul 18, 2022
Test/Reference	LOR	Unit				
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C4-PFBA (surr.)	1	%	104	109	96	104
13C5-PFPeA (surr.)		%	126	122	115	123
13C5-PFHxA (surr.)	1	%	110 102	107 97	101 96	104 92
13C4-PFHpA (surr.)	1	%	99	97 88	96	92 89
13C8-PFOA (surr.) 13C5-PFNA (surr.)	1	%	99 112	103	93	92
13C6-PFDA (surr.)	1	%	141	103	150	142
13C2-PFUnDA (surr.)	1	%	141	130	112	142
13C2-PFDoDA (surr.)	1	%	129	130	112	121
13C2-PFTeDA (surr.)	1	%	129	134	112	104
Perfluoroalkyl sulfonamido substances	1	/0	127	121	112	104
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N- MeFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N- EtFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N- MeFOSAA) ^{N11}	10		. 10	- 10	. 10	. 10
13C8-FOSA (surr.)	10 1	ug/kg %	< 10 85	< 10 92	< 10 88	< 10 80
D3-N-MeFOSA (surr.)	1	%	123	123	105	112
D5-N-EtFOSA (surr.)	1	%	92	95	88	87
D7-N-MeFOSE (surr.)	1	%	100	104	90	99
D9-N-EtFOSE (surr.)	1	%	85	93	82	85
D5-N-EtFOSAA (surr.)	1	%	156	99	138	126
D3-N-MeFOSAA (surr.)	1	%	93	63	92	80
Perfluoroalkyl sulfonic acids (PFSAs)	·	70		00	02	
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
13C3-PFBS (surr.)	1	%	126	130	120	122

Client Sample ID			BH03_0.05	BH03_0.5	BH04_0.05	BH04_0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			B22-JI0036573	B22-JI0036574	B22-JI0036575	B22-JI0036576
Date Sampled			Jul 18, 2022	Jul 18, 2022	Jul 18, 2022	Jul 18, 2022
Test/Reference	LOR	Unit				
Perfluoroalkyl sulfonic acids (PFSAs)						
18O2-PFHxS (surr.)	1	%	112	115	97	105
13C8-PFOS (surr.)	1	%	145	129	130	125
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 $FTSA$) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid(6:2 FTSA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 $FTSA)^{N11}$	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)^{N1}	5	ug/kg	< 5	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	174	135	140	130
13C2-6:2 FTSA (surr.)	1	%	140	93	100	101
13C2-8:2 FTSA (surr.)	1	%	104	111	101	92
13C2-10:2 FTSA (surr.)	1	%	96	103	91	84
PFASs Summations						
Sum (PFHxS + PFOS)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of WA DWER PFAS (n=10)*	10	ug/kg	< 10	< 10	< 10	< 10
Sum of PFASs (n=30)*	50	ug/kg	< 50	< 50	< 50	< 50

Client Sample ID			BH05_0.05	BH05_0.3	BH06_0.05	BH06_0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			B22-JI0036577	B22-JI0036578	B22-JI0036579	B22-JI0036580
Date Sampled			Jul 18, 2022	Jul 18, 2022	Jul 18, 2022	Jul 18, 2022
Test/Reference	LOR	Unit				
% Moisture	1	%	32	18	14	22
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C4-PFBA (surr.)	1	%	102	104	109	45
13C5-PFPeA (surr.)	1	%	118	122	124	51
13C5-PFHxA (surr.)	1	%	105	96	109	48
13C4-PFHpA (surr.)	1	%	98	100	95	42
13C8-PFOA (surr.)	1	%	94	92	91	43
13C5-PFNA (surr.)	1	%	101	108	100	46
13C6-PFDA (surr.)	1	%	99	146	142	64
13C2-PFUnDA (surr.)	1	%	114	126	127	63

Client Sample ID Sample Matrix			BH05_0.05 Soil	BH05_0.3 Soil	BH06_0.05 Soil	BH06_0.2 Soil
			B22-JI0036577	B22-JI0036578	B22-JI0036579	B22-JI0036580
Eurofins Sample No.						
Date Sampled			Jul 18, 2022	Jul 18, 2022	Jul 18, 2022	Jul 18, 2022
Test/Reference	LOR	Unit				
Perfluoroalkyl carboxylic acids (PFCAs)		1				
13C2-PFDoDA (surr.)	1	%	110	129	125	63
13C2-PFTeDA (surr.)	1	%	61	119	107	58
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
$\begin{array}{l} 2\text{-}(N\text{-}methylperfluoro\text{-}1\text{-}octane \ sulfonamido)\text{-}ethanol(N\text{-}MeFOSE)^{N1} \end{array}$	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N- EtFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
13C8-FOSA (surr.)	1	%	73	84	90	87
D3-N-MeFOSA (surr.)	1	%	110	125	122	125
D5-N-EtFOSA (surr.)	1	%	83	93	97	91
D7-N-MeFOSE (surr.)	1	%	90	99	103	102
D9-N-EtFOSE (surr.)	1	%	71	87	89	89
D5-N-EtFOSAA (surr.)	1	%	101	105	112	11
D3-N-MeFOSAA (surr.)	1	%	49	63	79	77
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
13C3-PFBS (surr.)	1	%	119	132	115	68
1802-PFHxS (surr.)	1	%	98	102	100	63
13C8-PFOS (surr.) n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	1	%	130	140	124	71
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2						
FTSA) ^{N11} 1H.1H.2H.2H-perfluorooctanesulfonic acid(6:2	5	ug/kg	< 5	< 5	< 5	< 5
FTSA) ^{N11} 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	<u> 10</u> 5	ug/kg ug/kg	< 10 < 5	< 10 < 5	< 10 < 5	< 10 < 5
11.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	<u>ug/kg</u> %	151	138	115	33
13C2-6:2 FTSA (surr.)	1	%	124	121	97	33
13C2-8:2 FTSA (surr.)	1	%	81	99	101	46
13C2-10:2 FTSA (surr.)	1	%	75	98	92	43
PFASs Summations		•				
Sum (PFHxS + PFOS)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of WA DWER PFAS (n=10)*	10	ug/kg	< 10	< 10	< 10	< 10
Sum of PFASs (n=30)*	50	ug/kg	< 50	< 50	< 50	< 50

Client Sample ID Sample Matrix			BH07_0.05 Soil	BH08_0.05 Soil	BH08_0.15 Soil	BH10_0.05 Soil
Eurofins Sample No.			B22-JI0036581	B22-JI0036582	B22-JI0036583	B22-JI0036584
Date Sampled			Jul 18, 2022	Jul 18, 2022	Jul 18, 2022	Jul 18, 2022
Test/Reference	LOR	Unit			, i	
	_					
% Moisture	1	%	35	8.1	16	20
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C4-PFBA (surr.)	1	%	93	100	80	97
13C5-PFPeA (surr.)	1	%	110	119	89	106
13C5-PFHxA (surr.)	1	%	99	110	84	100
13C4-PFHpA (surr.)	1	%	88	105	84	102
13C8-PFOA (surr.)	1	%	89	101	84	105
13C5-PFNA (surr.)	1	%	92	101	82	103
13C6-PFDA (surr.)	1	%	126	117	99	112
13C2-PFUnDA (surr.)	1	%	104	126	110	117
13C2-PFDoDA (surr.)	1	%	114	131	99	130
13C2-PFTeDA (surr.)	1	%	103	120	93	118
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
$\begin{array}{l} 2\text{-}(N\text{-}methylperfluoro\text{-}1\text{-}octane \ sulfonamido)\text{-}ethanol(N\text{-}MeFOSE)^{\text{N1}} \end{array}$	5	ug/kg	< 5	< 5	< 5	< 5
$\begin{array}{l} 2\text{-}(N\text{-}ethylperfluoro\text{-}1\text{-}octane \ sulfonamido)\text{-}ethanol(N\text{-}EtFOSE)^{N11} \end{array}$	5	ug/kg	< 5	< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N- MeFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
13C8-FOSA (surr.)	1	%	76	94	88	88
D3-N-MeFOSA (surr.)	1	%	110	142	140	128
D5-N-EtFOSA (surr.)	1	%	81	94	92	82
D7-N-MeFOSE (surr.)	1	%	87	98	97	82
D9-N-EtFOSE (surr.)	1	%	80	82	86	75
D5-N-EtFOSAA (surr.)	1	%	123	94	24	87
D3-N-MeFOSAA (surr.)	1	%	76	90	17	81
Perfluoroalkyl sulfonic acids (PFSAs)	•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5

Client Sample ID			BH07_0.05	BH08_0.05	BH08_0.15	BH10_0.05
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			B22-JI0036581	B22-JI0036582	B22-JI0036583	B22-JI0036584
Date Sampled			Jul 18, 2022	Jul 18, 2022	Jul 18, 2022	Jul 18, 2022
Test/Reference	LOR	Unit				
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
13C3-PFBS (surr.)	1	%	111	109	96	100
18O2-PFHxS (surr.)	1	%	91	99	87	95
13C8-PFOS (surr.)	1	%	115	86	76	90
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid(6:2 FTSA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	123	95	81	115
13C2-6:2 FTSA (surr.)	1	%	106	98	67	123
13C2-8:2 FTSA (surr.)	1	%	87	101	84	102
13C2-10:2 FTSA (surr.)	1	%	76	99	75	105
PFASs Summations						
Sum (PFHxS + PFOS)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of WA DWER PFAS (n=10)*	10	ug/kg	< 10	< 10	< 10	< 10
Sum of PFASs (n=30)*	50	ug/kg	< 50	< 50	< 50	< 50

Client Sample ID Sample Matrix			BH11_0.05 Soil	BH12_0.05 Soil	BH13_0.05 Soil	BH14_0.05 Soil
Eurofins Sample No.			B22-JI0036585	B22-JI0036586	B22-JI0036587	B22-JI0036588
Date Sampled			Jul 18, 2022	Jul 18, 2022	Jul 18, 2022	Jul 18, 2022
Test/Reference	LOR	Unit				
% Moisture	1	%	18	16	10	6.8
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C4-PFBA (surr.)	1	%	113	105	106	103
13C5-PFPeA (surr.)	1	%	130	107	104	110
13C5-PFHxA (surr.)	1	%	112	107	112	113
13C4-PFHpA (surr.)	1	%	101	105	112	114
13C8-PFOA (surr.)	1	%	100	117	107	114
13C5-PFNA (surr.)	1	%	109	98	110	103

Client Sample ID Sample Matrix			BH11_0.05 Soil	BH12_0.05 Soil	BH13_0.05 Soil	BH14_0.05 Soil
Eurofins Sample No.			B22-JI0036585	B22-JI0036586	B22-JI0036587	B22-JI0036588
Date Sampled			Jul 18, 2022	Jul 18, 2022	Jul 18, 2022	Jul 18, 2022
Test/Reference	LOR	Unit		our 10, 2022	041 10, 2022	
Perfluoroalkyl carboxylic acids (PFCAs)	LUK	Unit				
	4	0(1.40	110	400	407
13C6-PFDA (surr.)	<u>1</u> 1	%	143	119	123	127
13C2-PFUnDA (surr.)	1	%	132	118	127	133
13C2-PFDoDA (surr.) 13C2-PFTeDA (surr.)	1	%	134 113	138 112	136 114	140 115
Perfluoroalkyl sulfonamido substances	I	%	113	112	114	115
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N-MeFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N- EtFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)^{N^{11}}	10	ug/kg	< 10	< 10	< 10	< 10
13C8-FOSA (surr.)	1	%	94	85	89	94
D3-N-MeFOSA (surr.)	1	%	127	133	136	136
D5-N-EtFOSA (surr.)	1	%	98	92	95	100
D7-N-MeFOSE (surr.)	1	%	114	91	94	94
D9-N-EtFOSE (surr.)	1	%	93	79	82	86
D5-N-EtFOSAA (surr.)	1	%	142	96	91	86
D3-N-MeFOSAA (surr.)	1	%	102	86	97	82
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
13C3-PFBS (surr.)	1	%	119	104	110	105
18O2-PFHxS (surr.)	1	%	107	98	103	96
13C8-PFOS (surr.)	1	%	137	92	85	101
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)		_				
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid(6:2 FTSA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	134	105	103	101
13C2-6:2 FTSA (surr.)	1	%	104	96	97	101
13C2-8:2 FTSA (surr.)	1	%	97	101	99	100
13C2-10:2 FTSA (surr.)	1	%	94	98	99	103

Client Sample ID Sample Matrix			BH11_0.05 Soil	BH12_0.05 Soil	BH13_0.05 Soil	BH14_0.05 Soil
Eurofins Sample No.			B22-JI0036585	B22-JI0036586	B22-JI0036587	B22-JI0036588
Date Sampled			Jul 18, 2022	Jul 18, 2022	Jul 18, 2022	Jul 18, 2022
Test/Reference	LOR	Unit				
PFASs Summations						
Sum (PFHxS + PFOS)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of WA DWER PFAS (n=10)*	10	ug/kg	< 10	< 10	< 10	< 10
Sum of PFASs (n=30)*	50	ug/kg	< 50	< 50	< 50	< 50

Client Sample ID			BH15 0.05	BH16 0.05	BH17 0.05	BH18_0.05
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			B22-JI0036589	B22-JI0036590	B22-JI0036591	B22-JI0036592
Date Sampled			Jul 18, 2022	Jul 18, 2022	Jul 18, 2022	Jul 18, 2022
Test/Reference	LOR	Unit			, i	
% Moisture	1	%	7.1	6.8	12	13
Perfluoroalkyl carboxylic acids (PFCAs)		_				
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C4-PFBA (surr.)	1	%	103	104	105	103
13C5-PFPeA (surr.)	1	%	105	123	123	100
13C5-PFHxA (surr.)	1	%	106	106	102	105
13C4-PFHpA (surr.)	1	%	104	107	94	109
13C8-PFOA (surr.)	1	%	105	103	90	103
13C5-PFNA (surr.)	1	%	109	103	100	100
13C6-PFDA (surr.)	1	%	120	119	146	126
13C2-PFUnDA (surr.)	1	%	125	118	135	125
13C2-PFDoDA (surr.)	1	%	126	129	131	133
13C2-PFTeDA (surr.)	1	%	131	106	119	112
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N-MeFOSE) ^{%11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N- EtFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
13C8-FOSA (surr.)	1	%	90	92	96	90

Client Sample ID			BH15_0.05	BH16_0.05	BH17_0.05	BH18_0.05
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			B22-JI0036589	B22-JI0036590	B22-JI0036591	B22-JI0036592
Date Sampled			Jul 18, 2022	Jul 18, 2022	Jul 18, 2022	Jul 18, 2022
Test/Reference	LOR	Unit				
Perfluoroalkyl sulfonamido substances						
D3-N-MeFOSA (surr.)	1	%	135	139	124	137
D5-N-EtFOSA (surr.)	1	%	91	93	96	96
D7-N-MeFOSE (surr.)	1	%	86	99	100	103
D9-N-EtFOSE (surr.)	1	%	79	78	91	82
D5-N-EtFOSAA (surr.)	1	%	90	80	120	79
D3-N-MeFOSAA (surr.)	1	%	91	78	77	74
Perfluoroalkyl sulfonic acids (PFSAs)	-	-				
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
13C3-PFBS (surr.)	1	%	103	108	122	107
18O2-PFHxS (surr.)	1	%	98	92	105	103
13C8-PFOS (surr.)	1	%	88	93	141	91
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)^{N1}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid(6:2 FTSA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)^{N11} $\label{eq:stars}$	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)^{N1}	5	ug/kg	< 5	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	110	110	99	96
13C2-6:2 FTSA (surr.)	1	%	104	89	75	82
13C2-8:2 FTSA (surr.)	1	%	102	103	105	97
13C2-10:2 FTSA (surr.)	1	%	98	89	107	96
PFASs Summations						
Sum (PFHxS + PFOS)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of WA DWER PFAS (n=10)*	10	ug/kg	< 10	< 10	< 10	< 10
Sum of PFASs (n=30)*	50	ug/kg	< 50	< 50	< 50	< 50

Client Sample ID			BH19_0.05	BH20_0.05	QC01	QC03
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			B22-JI0036593	B22-JI0036594	B22-JI0036595	B22-JI0036596
Date Sampled			Jul 18, 2022	Jul 18, 2022	Jul 18, 2022	Jul 18, 2022
Test/Reference	LOR	Unit				
% Moisture	1	%	13	16	34	8.4

Client Sample ID			BH19_0.05	BH20 0.05	QC01	QC03
Sample Matrix			Soil	Soil	Soil	Soil
•						
Eurofins Sample No.			B22-JI0036593	B22-JI0036594	B22-JI0036595	B22-JI0036596
Date Sampled			Jul 18, 2022	Jul 18, 2022	Jul 18, 2022	Jul 18, 2022
Test/Reference	LOR	Unit				
Perfluoroalkyl carboxylic acids (PFCAs)		1				
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C4-PFBA (surr.)	1	%	93	104	97	106
13C5-PFPeA (surr.)	1	%	100	121	112	118
13C5-PFHxA (surr.)	1	%	102	102	96	106
13C4-PFHpA (surr.)	1	%	103	100	89	111
13C8-PFOA (surr.)	1	%	98	90	93	106
13C5-PFNA (surr.)	1	%	90	110	97	100
13C6-PFDA (surr.)	1	%	110	136	127	121
13C2-PFUnDA (surr.)	1	%	116	106	108	124
13C2-PFDoDA (surr.)	1	%	124	123	120	132
13C2-PFTeDA (surr.)	1	%	99	114	101	107
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N- MeFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N- EtFOSE) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N-	10		. 10	. 10	. 10	. 10
	10	ug/kg	< 10	< 10	< 10	< 10
13C8-FOSA (surr.)	1	%	88	82	80	92
D3-N-MeFOSA (surr.)	<u>1</u> 1	%	138 92	108	114	133 95
D5-N-EtFOSA (surr.)	1	%	92	87	83	95
D7-N-MeFOSE (surr.)	1	%		95	87 78	84
D9-N-EtFOSE (surr.) D5-N-EtFOSAA (surr.)	1	% %	85 66	79 141	136	79
D3-N-MeFOSAA (surr.)	1	%	53	88	90	79
Perfluoroalkyl sulfonic acids (PFSAs)	1	70	55	00	90	12
	F	110/110	- 5	. 5	- 5	. 5
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorononanesulfonic acid (PFNS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	< 5	< 5		< 5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	< 5	< 5	< 5	< 5
Perfluorooctanesulfonic acid (PFOS) ^{N11} Perfluorodecanesulfonic acid (PFDS) ^{N15}	<u>5</u>	ug/kg	< 5 < 5	< 5 < 5	< 5	< 5 < 5
		ug/kg				
13C3-PFBS (surr.)	1	%	104	111	111	110

Client Sample ID			BH19_0.05	BH20_0.05	QC01	QC03
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			B22-JI0036593	B22-JI0036594	B22-JI0036595	B22-JI0036596
Date Sampled			Jul 18, 2022	Jul 18, 2022	Jul 18, 2022	Jul 18, 2022
Test/Reference	LOR	Unit				
Perfluoroalkyl sulfonic acids (PFSAs)						
18O2-PFHxS (surr.)	1	%	92	104	98	100
13C8-PFOS (surr.)	1	%	89	124	121	90
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{№11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid(6:2 FTSA) ^{N11}	10	ug/kg	< 10	< 10	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)^{N11}	5	ug/kg	< 5	< 5	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	97	118	124	106
13C2-6:2 FTSA (surr.)	1	%	91	103	97	91
13C2-8:2 FTSA (surr.)	1	%	95	87	87	101
13C2-10:2 FTSA (surr.)	1	%	89	83	79	92
PFASs Summations						
Sum (PFHxS + PFOS)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	< 5	< 5	< 5	< 5
Sum of WA DWER PFAS (n=10)*	10	ug/kg	< 10	< 10	< 10	< 10
Sum of PFASs (n=30)*	50	ug/kg	< 50	< 50	< 50	< 50

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
% Moisture	Brisbane	Jul 19, 2022	14 Days
- Method: LTM-GEN-7080 Moisture			
Per- and Polyfluoroalkyl Substances (PFASs)			
Perfluoroalkyl carboxylic acids (PFCAs)	Brisbane	Jul 19, 2022	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonamido substances	Brisbane	Jul 19, 2022	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonic acids (PFSAs)	Brisbane	Jul 19, 2022	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	Brisbane	Jul 19, 2022	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			

Eurofins Environment Testing Australia Pty Lt ABN: 50 005 085 521													Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environn NZBN: 9429046024954	-
veb: ww	ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 VIC 3216 Tel: +61 3 8564 5000 NATA# 1261 Site# 1254 NATA# 1261 Site# 1				walan Street ale 16 1 3 8564 5000	Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 840 4 NATA# 1261 Site# 1			Mitchell ACT 2911 00 Tel: +61 2 6113 8091		Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600 NATA# 1261 Site# 2079	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 94 NATA# 1261 Site# 25079	Perth 46-48 Banksia Road Welshpool	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290
	npany Name: Iress:	EP Risk Mar Level 4 73 V North Sydne NSW 2060		SW)				Re Ph	rder N eport a none: ax:	#: 90	22743 6825 99225021		Received: Due: Priority: Contact Name:	Jul 19, 2022 9:00 A Jul 26, 2022 5 Day Nathan McGuire	АM
-	ject Name: ject ID:	PFAS ASSE EP2743	SSMENT									Eu	rofins Analytical Serv	ices Manager : Em	ma Beesley
	Sample Detail							Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)						
Brisb	ane Laborator	y - NATA # 126	1 Site # 2079	94			х	х	х						
	nal Laboratory														
No	Sample ID	Sample Date	Sampling Time	Matrix	LAE	3 ID									
	BH01_0.05	Jul 18, 2022		Soil	B22-JI00	36569		х	Х						
	BH01_0.2	Jul 18, 2022		Soil	B22-JI00	36570		Х	Х						
	BH02_0.05	Jul 18, 2022		Soil	B22-JI00			Х	Х						
	BH02_0.15	Jul 18, 2022		Soil	B22-JI00			Х	Х						
	BH03_0.05	Jul 18, 2022		Soil	B22-JI00			X	X						
- 1	BH03_0.5	Jul 18, 2022		Soil	B22-JI00			X	X						
	BH04_0.05	Jul 18, 2022		Soil	B22-JI00			X	X						
	BH04_0.3	Jul 18, 2022		Soil	B22-JI00			X	X						
	BH05_0.05	Jul 18, 2022		Soil	B22-JI00			X X	X X						
	BH05_0.3	Jul 18, 2022		Soil	B22-JI00			X	X						
	BH06_0.05	Jul 18, 2022		Soil	B22-JI00										
	BH06_0.2	Jul 18, 2022		Soil	B22-JI00			X	X						
13 11	BH07_0.05	Jul 18, 2022		Soil	B22-JI00	50201	I	Х	Х						

•••••••••••••••••••••••••••••••••••••••	C1	Eurofins Environn ABN: 50 005 085 521	nent Testing Australia	Pty Ltd							Eurofins ARL Pty LtdEurofins Environment TestABN: 91 05 0159 898NZBN: 9429046024954			
veb: www.eurofins.com.au	CUTOIIIS Melba 6 Mor Dand VIC 3 Tel: +		Grovedale Girrawee VIC 3216 NSW 214		79 Magowar Road irraween SW 2145 el: +61 2 9900 8400		Canberra Unit 1,2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091 217		Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600 NATA# 1261 Site# 203	Mayfield East NSW 2304 PO Box 60 Wickham 2293	Perth 46-48 Banksia Road Welshpool 3 WA 6106 Tel: +61 8 6253 4444	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290	
Company Name: Address:	EP Risk Ma Level 4 73 North Sydr NSW 2060	ney				Re	rder N eport a none: ax:	: 90	22743 06825 2 99225021		Received: Due: Priority: Contact Name:	Jul 19, 2022 9:00 / Jul 26, 2022 5 Day Nathan McGuire	AM	
Project Name: Project ID:	PFAS ASS EP2743	ESSMENT								Eu	rofins Analytical Serv	ices Manager : Err	ıma Beesley	
	S	Sample Detail			HOLD	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)							
Brisbane Laboratory	/ - NATA # 12	61 Site # 20794			Х	Х	Х							
14 BH08_0.05	Jul 18, 2022	Soil	B22-JI00	36582		Х	Х							
15 BH08_0.15	Jul 18, 2022	Soil	B22-JI00	36583		Х	Х							
16 BH10_0.05	Jul 18, 2022	Soil	B22-JI00	36584		Х	х							
17 BH11_0.05	Jul 18, 2022	Soil	B22-JI00	36585		Х	х							
18 BH12_0.05	Jul 18, 2022	Soil	B22-JI00	36586		Х	х							
19 BH13_0.05	Jul 18, 2022	Soil	B22-JI00	36587		Х	х							
20 BH14_0.05	Jul 18, 2022	Soil	B22-JI00	36588		Х	х							
21 BH15_0.05	Jul 18, 2022	Soil	B22-JI00	36589		Х	Х							
22 BH16_0.05	Jul 18, 2022	Soil	B22-JI00	36590		Х	Х							
23 BH17_0.05	Jul 18, 2022	Soil	B22-JI00	36591		Х	Х							
	Jul 18, 2022	Soil	B22-JI00	36592		Х	Х							
	Jul 18, 2022	Soil				Х	Х							
	Jul 18, 2022	Soil				Х	Х							
	JUI 10, 2022				· · · · · · · · · · · · · · · · · · ·									
26 BH20_0.05			B22-JI00	36595		Х	Х							
26 BH20_0.05 27 QC01	Jul 18, 2022 Jul 18, 2022 Jul 18, 2022	Soil Soil				X X	X X							

Eurofins Environment Testing Australia Pty L ABN: 50 005 085 521 Melbourne Geelong Syd												Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment Testing NZ Ltd NZBN: 9429046024954		
web: www.eurofins.com.au email: EnviroSales@eurofins.co		Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000 NATA# 1261 Site# 1254	Geelong 19/8 Lewalan Street Grovedale VIC 3216 Tel: +61 3 8564 5000 NATA# 1261 Site# 125	Sydney 179 Mago Girrawee NSW 214 Tel: +61 2 4 NATA# 1	n 5 2 9900 8	400	Mitche ACT 2 Tel: +6	2 Dacre Street	Murarrie QLD 4172 Tel: +61 7 3902 46	00	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 I NATA# 1261 Site# 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290	
Company Name: Address:	EP Risk Ma Level 4 73 V North Sydne NSW 2060					Re	rder N eport = hone: ax:	#: 90	P2743 06825 2 99225021			Received: Due: Priority: Contact Name:	Jul 19, 2022 9:00 A Jul 26, 2022 5 Day Nathan McGuire	Μ	
Project Name: Project ID:	PFAS ASSE EP2743	ESSMENT									Eu	rofins Analytical Serv	ices Manager : Em	ma Beesley	
	Si	ample Detail			НОГД	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)								
Brisbane Laboratory	- NATA # 126	1 Site # 20794			Х	х	Х								
30 RW01	Jul 18, 2022	Wate	r B22-JI00	036598			х								
31 BH07_0.2	Jul 18, 2022	Soil	B22-JI00	036605	Х										
	Jul 18, 2022	Soil	B22-JI0	036606	Х										
Test Counts					2	28	30								

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

U IIIIU		
mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 mi	lilitres NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

Termo	
APHA	American Public Health Association
COC	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA)	ug/kg	< 5		5	Pass	
Perfluoropentanoic acid (PFPeA)	ug/kg	< 5		5	Pass	
Perfluorohexanoic acid (PFHxA)	ug/kg	< 5		5	Pass	
Perfluoroheptanoic acid (PFHpA)	ug/kg	< 5		5	Pass	
Perfluorooctanoic acid (PFOA)	ug/kg	< 5		5	Pass	
Perfluorononanoic acid (PFNA)	ug/kg	< 5		5	Pass	
Perfluorodecanoic acid (PFDA)	ug/kg	< 5		5	Pass	
Perfluoroundecanoic acid (PFUnDA)	ug/kg	< 5		5	Pass	
Perfluorododecanoic acid (PFDoDA)	ug/kg	< 5		5	Pass	
Perfluorotridecanoic acid (PFTrDA)	ug/kg	< 5		5	Pass	
Perfluorotetradecanoic acid (PFTeDA)	ug/kg	< 5		5	Pass	
Method Blank	<i></i>		I I	1		
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA)	ug/kg	< 5		5	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	ug/kg	< 5		5	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	ug/kg	< 5		5	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N- MeFOSE)	ug/kg	< 5		5	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N-EtFOSE)	ug/kg	< 5		5	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	ug/kg	< 10		10	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	ug/kg	< 10		10	Pass	
Method Blank	ug/itg			10	1 400	
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS)	ug/kg	< 5		5	Pass	
Perfluorononanesulfonic acid (PFNS)	ug/kg ug/kg	< 5		5	Pass	
Perfluoropropanesulfonic acid (PFPrS)	ug/kg ug/kg	< 5		5	Pass	
Perfluoropentanesulfonic acid (PFPeS)	ug/kg ug/kg	< 5		5	Pass	
Perfluorohexanesulfonic acid (PFHxS)	ug/kg ug/kg	< 5		5	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	ug/kg ug/kg	< 5		5	Pass	
Perfluorooctanesulfonic acid (PFOS)	ug/kg ug/kg	< 5		5	Pass	
Perfluorodecanesulfonic acid (PFDS)	ug/kg ug/kg	< 5		5	Pass	
Method Blank	ug/kg				газэ	
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)		I				
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	ua/ka	. 5		E	Pass	
	ug/kg	< 5 < 10		5 10		
1H.1H.2H.2H-perfluorooctanesulfonic acid(6:2 FTSA) 1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	ug/kg				Pass	
	ug/kg	< 5		5	Pass	
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)	ug/kg	< 5		5	Pass	
LCS - % Recovery		1			1	
Perfluoroalkyl carboxylic acids (PFCAs)	0/	07		E0 150	Dese	
Perfluorobutanoic acid (PFBA)	%	87		50-150	Pass	
Perfluoropentanoic acid (PFPeA)	%	84		50-150	Pass	
Perfluorohexanoic acid (PFHxA)	%	88		50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	%	94		50-150	Pass	
Perfluorooctanoic acid (PFOA)	%	90		50-150	Pass	
Perfluorononanoic acid (PFNA)	%	81		50-150	Pass	
Perfluorodecanoic acid (PFDA)	%	95		50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	%	87		50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	%	93		50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	%	59		50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	%	88		50-150	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery								
Perfluoroalkyl sulfonamido substa	nces							
Perfluorooctane sulfonamide (FOSA)		%	95		50-150	Pass	
N-methylperfluoro-1-octane sulfonan	nide (N-MeFOSA)		%	95		50-150	Pass	
N-ethylperfluoro-1-octane sulfonamic	de (N-EtFOSA)		%	90		50-150	Pass	
2-(N-methylperfluoro-1-octane sulfor MeFOSE)	namido)-ethanol(N-	-	%	92		50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfona	mida)-ethanol(NI-E		%	67		50-150	Pass	
N-ethyl-perfluorooctanesulfonamidoa	/ /	,	%	85		50-150	Pass	
N-methyl-perfluorooctanesulfonamid		,	%	90		50-150	Pass	
LCS - % Recovery			70			00 100	1 433	
Perfluoroalkyl sulfonic acids (PFSA	 Δs)							
Perfluorobutanesulfonic acid (PFBS)			%	84		50-150	Pass	
Perfluorononanesulfonic acid (PFNS			%	83		50-150	Pass	
Perfluoropropanesulfonic acid (PFPr	/		%	95		50-150	Pass	
Perfluoropentanesulfonic acid (PFPe			%	77		50-150	Pass	
Perfluorohexanesulfonic acid (PFPe			%	87		50-150	Pass	
Perfluoronexanesulfonic acid (PFHx			%	112		50-150	Pass	
· · · · ·	/		%	87				
Perfluorooctanesulfonic acid (PFOS) Perfluorodecanesulfonic acid (PFDS	-		%	71		50-150 50-150	Pass Pass	
· · · · · · · · · · · · · · · · · · ·	·)		%			50-150	Pass	
LCS - % Recovery				· · · · ·	I I I		[
n:2 Fluorotelomer sulfonic acids (n	•		01	400				
1H.1H.2H.2H-perfluorohexanesulfon			%	106		50-150	Pass	
1H.1H.2H.2H-perfluorooctanesulfoni			%	95		50-150	Pass	
1H.1H.2H.2H-perfluorodecanesulfon			%	93		50-150	Pass	
1H.1H.2H.2H-perfluorododecanesulf	onic acid (10:2 FT	l í	%	87		50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Perfluoroalkyl carboxylic acids (PF	CAs)			Result 1				
Perfluorobutanoic acid (PFBA)	B22-JI0036579	CP	%	86		50-150	Pass	
Perfluoropentanoic acid (PFPeA)	B22-JI0036579	CP	%	79		50-150	Pass	
Perfluorohexanoic acid (PFHxA)	B22-JI0036579	CP	%	84		50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	B22-JI0036579	CP	%	89		50-150	Pass	
Perfluorooctanoic acid (PFOA)	B22-JI0036579	CP	%	86		50-150	Pass	
Perfluorononanoic acid (PFNA)	B22-JI0036579	CP	%	87		50-150	Pass	
Perfluorodecanoic acid (PFDA)	B22-JI0036579	CP	%	89		50-150	Pass	
Perfluoroundecanoic acid								
(PFUnDA) Perfluorododecanoic acid	B22-JI0036579	CP	%	82		50-150	Pass	
(PFDoDA)	B22-JI0036579	СР	%	86		50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	B22-JI0036579	CP	%	55		50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	B22-JI0036579	СР	%	93		50-150	Pass	
Spike - % Recovery					1 1		1	
Perfluoroalkyl sulfonamido substa	nces	,		Result 1				
Perfluorooctane sulfonamide (FOSA)	B22-JI0036579	СР	%	86		50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	B22-JI0036579	СР	%	87		50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	B22-JI0036579	СР	%	84		50-150	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N-MeFOSE)	B22-JI0036579	СР	%	91		50-150	Pass	
		<u> </u>	,	÷.				

Test	Lab Sample ID	QA Source	Units	Result 1		ceptance Limits	Pass Limits	Qualifying Code
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	B22-JI0036579	СР	%	93	5	50-150	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	B22-JI0036579	СР	%	88	5	50-150	Pass	
Spike - % Recovery					i i i	I		
Perfluoroalkyl sulfonic acids (PFS)	As)			Result 1				
Perfluorobutanesulfonic acid (PFBS)	B22-JI0036579	СР	%	85	5	50-150	Pass	
Perfluorononanesulfonic acid (PFNS)	B22-JI0036579	СР	%	88	5	50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)	B22-JI0036579	СР	%	93	5	50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	B22-JI0036579	СР	%	79	5	50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	B22-JI0036579	СР	%	86	5	50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	B22-JI0036579	СР	%	118	5	50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	B22-JI0036579	СР	%	94	5	50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	B22-JI0036579	СР	%	75	5	50-150	Pass	
Spike - % Recovery					1 1 1			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	,		Result 1				
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	B22-JI0036579	СР	%	97	5	50-150	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid(6:2 FTSA)	B22-JI0036579	СР	%	84		50-150	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	B22-JI0036579	СР	%	85	5	50-150	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	B22-JI0036579	СР	%	97	5	50-150	Pass	
Spike - % Recovery	D22 010000070		70			0 100	1 435	
Perfluoroalkyl carboxylic acids (Pf	FCAs)			Result 1				
Perfluorobutanoic acid (PFBA)	B22-JI0036590	СР	%	87	5	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	B22-JI0036590	CP	%	99		50-150	Pass	
Perfluorohexanoic acid (PFHxA)	B22-JI0036590	CP	%	90		50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	B22-JI0036590	СР	%	83		50-150	Pass	
Perfluorooctanoic acid (PFOA)	B22-JI0036590	CP	%	87	5	50-150	Pass	
Perfluorononanoic acid (PFNA)	B22-JI0036590	CP	%	89	5	50-150	Pass	
Perfluorodecanoic acid (PFDA)	B22-JI0036590	CP	%	95	5	50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	B22-JI0036590	СР	%	101	5	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	B22-JI0036590	СР	%	94	5	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	B22-JI0036590	CP	%	92	5	50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	B22-JI0036590	СР	%	84	5	50-150	Pass	
Spike - % Recovery				1				
Perfluoroalkyl sulfonamido substa	nces	, ,		Result 1				
Perfluorooctane sulfonamide (FOSA)	B22-JI0036590	СР	%	96	5	50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	B22-JI0036590	СР	%	102	5	50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	B22-JI0036590	СР	%	106	5	50-150	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N-MeFOSE)	B22-JI0036590	СР	%	126			50-150	Pass	
2-(N-ethylperfluoro-1-octane	D 22 110020500	<u>CD</u>	0/	04			50.450	Dees	
sulfonamido)-ethanol(N-EtFOSE)	B22-JI0036590	CP	%	81			50-150	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	B22-JI0036590	СР	%	85			50-150	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	B22-JI0036590	СР	%	90			50-150	Pass	
Spike - % Recovery	B22-JI0030390		70	90	<u> </u>		50-150	Fass	
Perfluoroalkyl sulfonic acids (PFS)	۵۶)			Result 1					
Perfluorobutanesulfonic acid				T Coult 1					
(PFBS)	B22-JI0036590	CP	%	76			50-150	Pass	
Perfluorononanesulfonic acid (PFNS)	B22-JI0036590	СР	%	120			50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)	B22-JI0036590	СР	%	80			50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	B22-JI0036590	СР	%	83			50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	B22-JI0036590	СР	%	88			50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	B22-JI0036590	СР	%	93			50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	B22-JI0036590	СР	%	105			50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	B22-JI0036590	СР	%	82			50-150	Pass	
Spike - % Recovery				D 1 1					
n:2 Fluorotelomer sulfonic acids (1:2 FISAS)			Result 1					
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	B22-JI0036590	СР	%	99			50-150	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid(6:2	B00 110000500	0.0	0/	101			50.450	Daaa	
FTSA)	B22-JI0036590	CP	%	104			50-150	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	B22-JI0036590	СР	%	100			50-150	Pass	
1H.1H.2H.2H-									
perfluorododecanesulfonic acid (10:2 FTSA)	B22-JI0036590	СР	%	85			50-150	Pass	
Test	Lab Sample ID	QA	Units	Result 1			Acceptance	Pass	Qualifying
	Lab Gample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate				D 14					
0/ Maintune	D 00 110000570	CD	0/	Result 1	Result 2	RPD	2004	Fail	045
% Moisture	B22-JI0036572	СР	%	14	10	33	30%	Fail	Q15
Duplicate				Result 1	Result 2	RPD			
% Moisture	B22-JI0036582	СР	%	8.1	7.1	13	30%	Pass	
Duplicate	022-010000002		/0	0.1	1.1	13	30 /0	1 055	
Perfluoroalkyl carboxylic acids (Pf				Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	B22-JI0036585	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA)	B22-JI0036585	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorohexanoic acid (PFHxA)	B22-JI0036585	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	B22-JI0036585	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorooctanoic acid (PFOA)	B22-JI0036585	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanoic acid (PFNA)	B22-JI0036585	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorodecanoic acid (PFDA)	B22-JI0036585	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	B22-JI0036585	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorododecanoic acid	-								

Duplicate									
Perfluoroalkyl carboxylic acids (PF	CAs)			Result 1	Result 2	RPD			
Perfluorotridecanoic acid (PFTrDA)	B22-JI0036585	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	B22-JI0036585	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate									
Perfluoroalkyl sulfonamido substa	nces		1	Result 1	Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	B22-JI0036585	СР	ug/kg	< 5	< 5	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	B22-JI0036585	СР	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	B22-JI0036585	СР	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N-MeFOSE)	B22-JI0036585	СР	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N-EtFOSE)	B22-JI0036585	СР	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	B22-JI0036585	СР	ug/kg	< 10	< 10	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	B22-JI0036585	СР	ug/kg	< 10	< 10	<1	30%	Pass	
Duplicate				1	1				
Perfluoroalkyl sulfonic acids (PFS)	As)		1	Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	B22-JI0036585	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	B22-JI0036585	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	B22-JI0036585	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	B22-JI0036585	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	B22-JI0036585	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	B22-JI0036585	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	B22-JI0036585	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	B22-JI0036585	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate n:2 Fluorotelomer sulfonic acids (r				Result 1	Result 2	RPD			
1H.1H.2H.2H-				i i coult i				+	
perfluorohexanesulfonic acid (4:2 FTSA)	B22-JI0036585	СР	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid(6:2 FTSA)	B22-JI0036585	СР	ug/kg	< 10	< 10	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	B22-JI0036585	СР	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	B22-JI0036585	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate				1	1 1				
			1	Result 1	Result 2	RPD		<u> </u>	
% Moisture	B22-JI0036593	СР	%	13	13	4.7	30%	Pass	
Duplicate				Deput	Desult 0	DDD			
Perfluoroalkyl carboxylic acids (PF	,		1.0/1	Result 1	Result 2	RPD	200/	- Daar	
Perfluorobutanoic acid (PFBA)	B22-JI0036596	CP CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA)	B22-JI0036596	CP CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA)	B22-JI0036596 B22-JI0036596	CP CP	ug/kg ug/kg	< 5 < 5	< 5 < 5	<1 <1	30% 30%	Pass Pass	
Perfluorooctanoic acid (PFOA)	B22-JI0036596	CP	ug/kg ug/kg	< 5	< 5	<1	30%	Pass	

Duplicate									
Perfluoroalkyl carboxylic acids (PF	-CAs)			Result 1	Result 2	RPD			
Perfluorononanoic acid (PFNA)	B22-JI0036596	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorodecanoic acid (PFDA)	B22-JI0036596	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	B22-JI0036596	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorododecanoic acid (PFDoDA)	B22-JI0036596	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	B22-JI0036596	CP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	B22-JI0036596	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate				1			L	1	
Perfluoroalkyl sulfonamido substa	nces		1	Result 1	Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	B22-JI0036596	СР	ug/kg	< 5	< 5	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	B22-JI0036596	СР	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	B22-JI0036596	СР	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N-MeFOSE)	B22-JI0036596	СР	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N-EtFOSE)	B22-JI0036596	СР	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	B22-JI0036596	СР	ug/kg	< 10	< 10	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	B22-JI0036596	СР	ug/kg	< 10	< 10	<1	30%	Pass	
Duplicate				T	1			1	
Perfluoroalkyl sulfonic acids (PFS)	As)		1	Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	B22-JI0036596	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	B22-JI0036596	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	B22-JI0036596	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	B22-JI0036596	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	B22-JI0036596	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	B22-JI0036596	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	B22-JI0036596	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	B22-JI0036596	СР	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate				1				_	
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)			Result 1	Result 2	RPD			
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	B22-JI0036596	СР	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid(6:2 FTSA)	B22-JI0036596	СР	ug/kg	< 10	< 10	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	B22-JI0036596	СР	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	B22-JI0036596	СР	ug/kg	< 5	< 5	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
N11	Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds.
N15	Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time to the analyte and no recovery correction has been made (Internal Standard Quantitation).
Q15	The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Emma Beesley Jonathon Angell Analytical Services Manager Senior Analyst-Sample Properties

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

^{*} Indicates NATA accreditation does not cover the performance of this service

EP Risk Management (NSW) Level 4 73 Walker St North Sydney NSW 2060

Attention:

Nathan McGuire

Report Project name Project ID Received Date **906825-W** PFAS ASSESSMENT EP2743 Jul 19, 2022

Client Sample ID			FB01	RW01
Sample Matrix			Water	Water
Eurofins Sample No.			B22-JI0036597	B22-JI0036598
Date Sampled			Jul 18, 2022	Jul 18, 2022
Test/Reference	LOR	Unit		
Perfluoroalkyl carboxylic acids (PFCAs)	-			
Perfluorobutanoic acid (PFBA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
Perfluoropentanoic acid (PFPeA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluorohexanoic acid (PFHxA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluoroheptanoic acid (PFHpA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluorononanoic acid (PFNA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluorodecanoic acid (PFDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluoroundecanoic acid (PFUnDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluorododecanoic acid (PFDoDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluorotridecanoic acid (PFTrDA) ^{N15}	0.01	ug/L	< 0.01	< 0.01
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
13C4-PFBA (surr.)	1	%	133	103
13C5-PFPeA (surr.)	1	%	134	136
13C5-PFHxA (surr.)	1	%	121	129
13C4-PFHpA (surr.)	1	%	85	84
13C8-PFOA (surr.)	1	%	136	133
13C5-PFNA (surr.)	1	%	78	111
13C6-PFDA (surr.)	1	%	105	134
13C2-PFUnDA (surr.)	1	%	88	115
13C2-PFDoDA (surr.)	1	%	89	125
13C2-PFTeDA (surr.)	1	%	49	84
Perfluoroalkyl sulfonamido substances				
Perfluorooctane sulfonamide (FOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N-MeFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N- EtFOSE) ^{N11}	0.05	ug/L	< 0.05	< 0.05
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
13C8-FOSA (surr.)	1	%	85	81
D3-N-MeFOSA (surr.)	1	%	67	67
D5-N-EtFOSA (surr.)	1	%	68	69

NATA Accredited Accreditation Number 1261 Site Number 20794

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Client Sample ID			FB01	RW01
Sample Matrix			Water	Water
Eurofins Sample No.			B22-JI0036597	B22-JI0036598
Date Sampled			Jul 18, 2022	Jul 18, 2022
Test/Reference	LOR	Unit		
Perfluoroalkyl sulfonamido substances		4		
D7-N-MeFOSE (surr.)	1	%	62	61
D9-N-EtFOSE (surr.)	1	%	56	54
D5-N-EtFOSAA (surr.)	1	%	98	149
D3-N-MeFOSAA (surr.)	1	%	75	149
Perfluoroalkyl sulfonic acids (PFSAs)				
Perfluorobutanesulfonic acid (PFBS) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluorononanesulfonic acid (PFNS) ^{N15}	0.01	ug/L	< 0.01	< 0.01
Perfluoropropanesulfonic acid (PFPrS) ^{N15}	0.01	ug/L	< 0.01	< 0.01
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	0.01	ug/L	< 0.01	< 0.01
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	0.01	ug/L	< 0.01	< 0.01
Perfluorooctanesulfonic acid (PFOS) ^{N11}	0.01	ug/L	< 0.01	< 0.01
Perfluorodecanesulfonic acid (PFDS) ^{N15}	0.01	ug/L	< 0.01	< 0.01
13C3-PFBS (surr.)	1	%	92	97
18O2-PFHxS (surr.)	1	%	82	95
13C8-PFOS (surr.)	1	%	77	88
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)				
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
1H.1H.2H.2H-perfluorooctanesulfonic acid(6:2 FTSA) ^{N11}	0.05	ug/L	< 0.05	< 0.05
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	0.01	ug/L	< 0.01	< 0.01
13C2-4:2 FTSA (surr.)	1	%	113	154
13C2-6:2 FTSA (surr.)	1	%	86	159
13C2-8:2 FTSA (surr.)	1	%	75	154
13C2-10:2 FTSA (surr.)	1	%	135	146
PFASs Summations				
Sum (PFHxS + PFOS)*	0.01	ug/L	< 0.01	< 0.01
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	< 0.01	< 0.01
Sum of WA DWER PFAS (n=10)*	0.05	ug/L	< 0.05	< 0.05
Sum of PFASs (n=30)*	0.1	ug/L	< 0.1	< 0.1

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Per- and Polyfluoroalkyl Substances (PFASs)			
Perfluoroalkyl carboxylic acids (PFCAs)	Brisbane	Jul 19, 2022	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonamido substances	Brisbane	Jul 19, 2022	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonic acids (PFSAs)	Brisbane	Jul 19, 2022	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	Brisbane	Jul 19, 2022	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			

		C	Eurofins Env ABN: 50 005 085		ing Australia	Pty Ltd							Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environn NZBN: 9429046024954	-
veb: ww	w.eurofins.com.au		Melbourne 6 Monterey Road Dandenong Sou VIC 3175 Tel: +61 3 8564 NATA# 1261 Site	Geelor 19/8 Le th Groved VIC 32 5000 Tel: +6	walan Street ale 16 1 3 8564 5000	Sydney 179 Mago Girraween NSW 214 Tel: +61 2 NATA# 12	n 5 2 9900 8	3400	Mitche ACT 2 Tel: +6	2 Dacre Street	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600 NATA# 1261 Site# 2079	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 94 NATA# 1261 Site# 25079	Perth 46-48 Banksia Road Welshpool	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290
	npany Name: Iress:	EP Risk Mar Level 4 73 V North Sydne NSW 2060		SW)				Re Ph	rder N eport a none: ax:	#: 90	22743 6825 99225021		Received: Due: Priority: Contact Name:	Jul 19, 2022 9:00 A Jul 26, 2022 5 Day Nathan McGuire	АM
-	ject Name: ject ID:	PFAS ASSE EP2743	SSMENT									Eu	rofins Analytical Serv	ices Manager : Em	ma Beesley
		Sa	ample Detail				HOLD	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)						
Brisb	ane Laborator	y - NATA # 126	1 Site # 2079	94			х	х	Х						
	nal Laboratory														
No	Sample ID	Sample Date	Sampling Time	Matrix	LAE	3 ID									
	BH01_0.05	Jul 18, 2022		Soil	B22-JI00	36569		х	Х						
	BH01_0.2	Jul 18, 2022		Soil	B22-JI00	36570		Х	Х						
	BH02_0.05	Jul 18, 2022		Soil	B22-JI00			Х	Х						
	BH02_0.15	Jul 18, 2022		Soil	B22-JI00			Х	Х						
	BH03_0.05	Jul 18, 2022		Soil	B22-JI00			X	X						
- 1	BH03_0.5	Jul 18, 2022		Soil	B22-JI00			X	X						
	BH04_0.05	Jul 18, 2022		Soil	B22-JI00			X	X						
	BH04_0.3	Jul 18, 2022		Soil	B22-JI00			X	X						
	BH05_0.05	Jul 18, 2022		Soil	B22-JI00			X X	X X						
	BH05_0.3	Jul 18, 2022		Soil	B22-JI00			X	X						
	BH06_0.05	Jul 18, 2022		Soil	B22-JI00										
	BH06_0.2	Jul 18, 2022		Soil	B22-JI00			X	X						
13 11	BH07_0.05	Jul 18, 2022		Soil	B22-JI00	50201	I	Х	Х						

		Eurofins Environn ABN: 50 005 085 521	nent Testing Australia	Pty Ltd							Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environn NZBN: 942904602495	
veb: www.eurofins.com.au mail: EnviroSales@eurofins.com		Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000	Ibourne Geelong Syd Ionterey Road 19/8 Lewalan Street 179 ndenong South Grovedale Girra 3175 VIC 3216 NSV		Sydney 79 Magowar Road Sirraween NSW 2145 Fel: +61 2 9900 8400 NATA# 1261 Site# 1821			Dacre Street 1/ M 1 Q 2 6113 8091 T	risbane 21 Smallwood Place lurarrie LD 4172 el: +61 7 3902 4600 ATA# 1261 Site# 207	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 229: Tel: +61 2 4968 8448 794 NATA# 1261 Site# 25079	Perth 46-48 Banksia Road Welshpool 3 WA 6106 Tel: +61 8 6253 4444	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290
Company Name: Address:	EP Risk Ma Level 4 73 North Sydr NSW 2060	ney				Re Ph	rder N eport hone: ax:		5		Received: Due: Priority: Contact Name:	Jul 19, 2022 9:00 / Jul 26, 2022 5 Day Nathan McGuire	AM
Project Name: Project ID:	PFAS ASS EP2743	ESSMENT								Eu	rofins Analytical Serv	vices Manager : Em	ima Beesley
	S	Sample Detail			HOLD	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)						
Brisbane Laboratory	- NATA # 12	61 Site # 20794			Х	Х	Х						
14 BH08_0.05	Jul 18, 2022	Soil	B22-JI0	036582		х	Х						
	Jul 18, 2022	Soil	B22-JI00	036583		х	х						
16 BH10_0.05	Jul 18, 2022	Soil	B22-JI0	036584		х	Х						
	Jul 18, 2022	Soil	B22-JI00	036585		х	Х						
	Jul 18, 2022	Soil	B22-JI00	036586		х	Х						
	Jul 18, 2022	Soil	B22-JI0	036587		Х	Х						
	Jul 18, 2022	Soil	B22-JI0	036588		Х	Х						
	Jul 18, 2022	Soil	B22-JI0	036589		Х	Х						
	Jul 18, 2022	Soil	B22-JI00	036590		Х	Х						
	Jul 18, 2022	Soil	B22-JI00			Х	Х						
	Jul 18, 2022	Soil	B22-JI00	036592		Х	Х						
25 BH19_0.05	Jul 18, 2022	Soil	B22-JI00	036593		х	Х						
26 BH20_0.05	Jul 18, 2022	Soil	B22-JI0	036594		х	Х						
27 QC01	Jul 18, 2022	Soil	B22-JI0	036595		Х	Х						
						х	Х						
28 QC03	Jul 18, 2022	Soil	B22-JI0	020290			~						

		Eurofins Environme ABN: 50 005 085 521	ent Testing Australia	Pty Ltd								Eurofins ARL Pty Ltd ABN: 91 05 0159 898	d Eurofins Environment Testing NZ Ltd NZBN: 9429046024954		
web: www.eurofins.com.au email: EnviroSales@eurofins.c		Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000 NATA# 1261 Site# 1254	Geelong 19/8 Lewalan Street Grovedale VIC 3216 Tel: +61 3 8564 5000 NATA# 1261 Site# 125	Sydney 179 Mago Girrawee NSW 214 Tel: +61 2 4 NATA# 1	n 5 2 9900 8	400	Mitche ACT 2 Tel: +6	2 Dacre Street	Murarrie QLD 4172 Tel: +61 7 3902 46	00	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 I NATA# 1261 Site# 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290	
Company Name: Address:	EP Risk Ma Level 4 73 V North Sydne NSW 2060					Re	rder N eport = hone: ax:	#: 90	P2743 06825 2 99225021			Received: Due: Priority: Contact Name:	Jul 19, 2022 9:00 A Jul 26, 2022 5 Day Nathan McGuire	Μ	
Project Name: Project ID:	PFAS ASSE EP2743	ESSMENT									Eu	rofins Analytical Serv	ices Manager : Em	ma Beesley	
	Si	ample Detail			НОГД	Moisture Set	Per- and Polyfluoroalkyl Substances (PFASs)								
Brisbane Laboratory	- NATA # 126	1 Site # 20794			Х	х	Х								
30 RW01	Jul 18, 2022	Wate	r B22-JI00	036598			х								
31 BH07_0.2	Jul 18, 2022	Soil	B22-JI00	036605	Х										
	Jul 18, 2022	Soil	B22-JI0	036606	Х										
Test Counts					2	28	30								

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

onito		
mg/kg: milligrams per kilogram	mg/L: milligrams per litre	µg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA	American Public Health Association
COC	Chain of Custody
CP	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA)	ug/L	< 0.05		0.05	Pass	
Perfluoropentanoic acid (PFPeA)	ug/L	< 0.01		0.01	Pass	
Perfluorohexanoic acid (PFHxA)	ug/L	< 0.01		0.01	Pass	
Perfluoroheptanoic acid (PFHpA)	ug/L	< 0.01		0.01	Pass	
Perfluorooctanoic acid (PFOA)	ug/L	< 0.01		0.01	Pass	
Perfluorononanoic acid (PFNA)	ug/L	< 0.01		0.01	Pass	
Perfluorodecanoic acid (PFDA)	ug/L	< 0.01		0.01	Pass	
Perfluoroundecanoic acid (PFUnDA)	ug/L	< 0.01		0.01	Pass	
Perfluorododecanoic acid (PFDoDA)	ug/L	< 0.01		0.01	Pass	
Perfluorotridecanoic acid (PFTrDA)	ug/L	< 0.01		0.01	Pass	
Perfluorotetradecanoic acid (PFTeDA)	ug/L	< 0.01		0.01	Pass	
Method Blank						
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA)	ug/L	< 0.05		0.05	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	ug/L	< 0.05		0.05	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	ug/L	< 0.05		0.05	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N- MeFOSE)	ug/L	< 0.05		0.05	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N-EtFOSE)	ug/L	< 0.05		0.05	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	ug/L	< 0.05		0.05	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	ug/L	< 0.05		0.05	Pass	
Method Blank						
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS)	ug/L	< 0.01		0.01	Pass	
Perfluorononanesulfonic acid (PFNS)	ug/L	< 0.01		0.01	Pass	
Perfluoropropanesulfonic acid (PFPrS)	ug/L	< 0.01		0.01	Pass	
Perfluoropentanesulfonic acid (PFPeS)	ug/L	< 0.01		0.01	Pass	
Perfluorohexanesulfonic acid (PFHxS)	ug/L	< 0.01		0.01	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	ug/L	< 0.01		0.01	Pass	
Perfluorooctanesulfonic acid (PFOS)	ug/L	< 0.01		0.01	Pass	
Perfluorodecanesulfonic acid (PFDS)	ug/L	< 0.01		0.01	Pass	
Method Blank	ug/L	<u> </u>		0.01	1 455	
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)						
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	ug/L	< 0.01		0.01	Pass	
1H.1H.2H.2H-perfluorooctanesulfonic acid(6:2 FTSA)	ug/L	< 0.05		0.05	Pass	
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	ug/L	< 0.00		0.00	Pass	
1H.1H.2H.2H.perfluorododecanesulfonic acid (10:2 FTSA)	ug/L	< 0.01		0.01	Pass	
LCS - % Recovery	ug/L	< 0.01		0.01	1 435	
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA)	%	82		50-150	Pass	
Perfluoropentanoic acid (PFPA)	%	77		50-150	Pass	
Perfluoropentanoic acid (PFPA)	%	80		50-150		
Perfluoroheptanoic acid (PFHpA)	%	77			Pass	
Perfluorooctanoic acid (PFDA)	%	76		50-150 50-150	Pass	
	%			50-150	Pass	
Perfluorononanoic acid (PFNA)		80		50-150	Pass	
Perfluorodecanoic acid (PFDA)	%	75		50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	%	78		50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	%	81		50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	%	69		50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	%	71		50-150	Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery					_		
Perfluoroalkyl sulfonamido substa	nces						
Perfluorooctane sulfonamide (FOSA)		%	72	50-150	Pass	
N-methylperfluoro-1-octane sulfonan	nide (N-MeFOSA)		%	74	50-150	Pass	
N-ethylperfluoro-1-octane sulfonamic	de (N-EtFOSA)		%	65	50-150	Pass	
2-(N-methylperfluoro-1-octane sulfor	namido)-ethanol(N	-	%	86	50 150	Booo	
MeFOSE)	mide) etheral/NLF		%	72	50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfona	/ /	,			50-150	Pass	
N-ethyl-perfluorooctanesulfonamidoa			%	75 81	50-150	Pass	
N-methyl-perfluorooctanesulfonamid		FUSAA)	70	01	50-150	Pass	
LCS - % Recovery	A c)				1		
Perfluoroalkyl sulfonic acids (PFSA			%	77	50.150	Deee	
Perfluorobutanesulfonic acid (PFBS)					50-150	Pass	
Perfluorononanesulfonic acid (PFNS	1		%	72	50-150	Pass	
Perfluoropropanesulfonic acid (PFPr	,		%	94	50-150	Pass	
Perfluoropentanesulfonic acid (PFPe	,		%	68	50-150	Pass	
Perfluorohexanesulfonic acid (PFHx	,		%	80	50-150	Pass	
Perfluoroheptanesulfonic acid (PFHp			%	84	50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)			%	75	50-150	Pass	
Perfluorodecanesulfonic acid (PFDS	5)		%	76	50-150	Pass	
LCS - % Recovery				1	T	1	
n:2 Fluorotelomer sulfonic acids (n						_	
1H.1H.2H.2H-perfluorohexanesulfon			%	78	50-150	Pass	
1H.1H.2H.2H-perfluorooctanesulfoni			%	81	50-150	Pass	
1H.1H.2H.2H-perfluorodecanesulfon			%	76	50-150	Pass	
1H.1H.2H.2H-perfluorododecanesulf	fonic acid (10:2 FT	SA)	%	66	50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Perfluoroalkyl carboxylic acids (PF	CAs)			Result 1			
Perfluorobutanoic acid (PFBA)	B22-JI0036598	CP	%	83	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	B22-JI0036598	CP	%	78	50-150	Pass	
Perfluorohexanoic acid (PFHxA)	B22-JI0036598	CP	%	80	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	B22-JI0036598	CP	%	75	50-150	Pass	
Perfluorooctanoic acid (PFOA)	B22-JI0036598	СР	%	79	50-150	Pass	
Perfluorononanoic acid (PFNA)	B22-JI0036598	CP	%	75	50-150	Pass	
Perfluorodecanoic acid (PFDA)	B22-JI0036598	СР	%	74	50-150	Pass	
Perfluoroundecanoic acid							
(PFUnDA) Perfluorododecanoic acid	B22-JI0036598	CP	%	75	50-150	Pass	
(PFDoDA)	B22-JI0036598	СР	%	80	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	B22-JI0036598	CP	%	66	50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	B22-JI0036598	СР	%	79	50-150	Pass	
Spike - % Recovery					1		
Perfluoroalkyl sulfonamido substa	nces			Result 1			
Perfluorooctane sulfonamide (FOSA)	B22-JI0036598	СР	%	72	50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	B22-JI0036598	СР	%	84	50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	B22-JI0036598	СР	%	74	50-150	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N-MeFOSE)	B22-JI0036598	СР	%	112	50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N-EtFOSE)	B22-JI0036598	СР	%	81	50-150	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	B22-JI0036598	СР	%	75			50-150	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	B22-JI0036598	СР	%	75			50-150	Pass	
Spike - % Recovery									
Perfluoroalkyl sulfonic acids (PFS)	As)			Result 1					
Perfluorobutanesulfonic acid (PFBS)	B22-JI0036598	СР	%	80			50-150	Pass	
Perfluorononanesulfonic acid (PFNS)	B22-JI0036598	СР	%	75			50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)	B22-JI0036598	СР	%	85			50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	B22-JI0036598	СР	%	65			50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	B22-JI0036598	СР	%	87			50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	B22-JI0036598	СР	%	82			50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	B22-JI0036598	СР	%	79			50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	B22-JI0036598	СР	%	60			50-150	Pass	
Spike - % Recovery				I			I		
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)			Result 1					
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	B22-JI0036598	СР	%	75			50-150	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid(6:2 FTSA)	B22-JI0036598	СР	%	84			50-150	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	B22-JI0036598	СР	%	72			50-150	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	B22-JI0036598	СР	%	68			50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Perfluoroalkyl carboxylic acids (PF	CAs)			Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	B22-JI0036597	CP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA)	B22-JI0036597	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorohexanoic acid (PFHxA)	B22-JI0036597	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	B22-JI0036597	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorooctanoic acid (PFOA)	B22-JI0036597	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorononanoic acid (PFNA)	B22-JI0036597	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorodecanoic acid (PFDA)	B22-JI0036597	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	B22-JI0036597	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorododecanoic acid (PFDoDA)	B22-JI0036597	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	B22-JI0036597	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	B22-JI0036597	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	

Duplicate									
Perfluoroalkyl sulfonamido substances				Result 1	Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	B22-JI0036597	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	B22-JI0036597	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	B22-JI0036597	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N-MeFOSE)	B22-JI0036597	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N-EtFOSE)	B22-JI0036597	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	B22-JI0036597	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	B22-JI0036597	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Duplicate				-					
Perfluoroalkyl sulfonic acids (PFS	As)			Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	B22-JI0036597	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorononanesulfonic acid (PFNS)	B22-JI0036597	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoropropanesulfonic acid (PFPrS)	B22-JI0036597	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	B22-JI0036597	CP	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	B22-JI0036597	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	B22-JI0036597	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	B22-JI0036597	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	B22-JI0036597	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate				-				_	
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)			Result 1	Result 2	RPD		+	
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	B22-JI0036597	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid(6:2 FTSA)	B22-JI0036597	СР	ug/L	< 0.05	< 0.05	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	B22-JI0036597	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	B22-JI0036597	СР	ug/L	< 0.01	< 0.01	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N11 Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled nalogues allow identification and recovery correction of the concentration of the associated native PFAS compounds.

Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time N15 to the analyte and no recovery correction has been made (Internal Standard Quantitation).

Authorised by:

Emma Beesley Jonathon Angell Analytical Services Manager Senior Analyst-PFAS

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.